[1] WISLER D. The technical and economic relevance of understanding blade row interactions effects in turbomachinery[R]. Belgium:von Karman Institute for Fluid Dynamics, 1998. [2] HOWELL R J, RAMESH O N, HODSON H P, et al. High lift and aft-loaded profiles for low-pressure turbines[J]. Journal of Turbomachinery, 2001, 123(2):181-188. [3] HODSON H P, HOWELL R J. The role of transition in high-lift low-pressure turbines for aeroengines[J]. Progress in Aerospace Sciences, 2005, 41(6):419-454. [4] STIEGER R D. The effect of wakes on separating boundary layers in low pressure turbines[D]. Cambridge:University of Cambridge, 2002. [5] ZHANG X F. Separation and transition control on ultra-high-lift low pressure turbine blades in unsteady flow[D]. Cambridge:University of Cambridge, 2006. [6] 伊进宝,乔渭阳,孙大伟.低压涡轮叶栅流动分离主动控制实验研究[J].航空学报, 2007, 28(5):1055-1061. YI J B, QIAO W Y, SUN D W. Experimental investigation of active control of flow separation at low-pressure turbine cascade[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(5):1055-1061(in Chinese). [7] CIORCIARI R, KIRIK I, NIEHUIS R. Effects of unsteady wakes on the secondary flows in the linear T106 turbine cascade[J]. Journal of Turbomachinery, 2014, 136(9):091010. [8] WINHART B, SINKWITZ M, SCHRAMM A, et al. Experimental and numerical investigation of secondary flow structures in an annular low pressure turbine cascade under periodic wake impact-Part 1:Experimental results[J]. Journal of Turbomachinery, 2019, 141(2):021008. [9] QU X, ZHANG Y F, LU X G, et al. Effect of periodic wakes and a contoured endwall on secondary flow in a high-lift low-pressure turbine cascade at low Reynolds numbers[J]. Computers&Fluids, 2019, 190:1-14. [10] MICHÁLEK J, MONALDI M, ARTS T. Aerodynamic performance of a very high lift low pressure turbine airfoil (T106C) at low Reynolds and high Mach number with effect of free stream turbulence intensity[J]. Journal of Turbomachinery, 2012, 134(6):061009. [11] 李维,邹正平,赵晓路.雷诺数对涡轮部件性能的影响[J].航空动力学报, 2004, 19(6):822-827. LI W, ZOU Z P, ZHAO X L. The effects of Reynolds number on the characteristics of the low pressure turbine[J]. Journal of Aerospace Power, 2004, 19(6):822-827(in Chinese). [12] HURA H S, JOSEPH J, HALSTEAD D E. Reynolds number effects in a low pressure turbine:GT2012-68501[R]. New York:ASME, 2012. [13] BROSSMAN J R, BALL P R, SMITH N R, et al. Sensitivity of multistage compressor performance to inlet boundary conditions[J]. Journal of Propulsion and Power, 2014, 30(2):407-415. [14] SALVADORI S, MONTOMOLI F, MARTELLI F, et al. Analysis on the effect of a nonuniform inlet profile on heat transfer and fluid flow in turbine stages[J]. Journal of Turbomachinery, 2012, 134(1):011012. [15] 夏志恒,罗佳奇.考虑来流角变化影响的叶栅稳健性优化设计[J].工程热物理学报, 2021, 42(1):121-129. XIA Z H, LUO J Q. Robust design optimization of a turbine cascade considering the uncertain changes of inlet flow angle[J]. Journal of Engineering Thermophysics, 2021, 42(1):121-129(in Chinese). [16] 夏志恒.基于混沌模型的叶轮机械气动不确定性研究及稳健性设计优化[D].北京:北京大学, 2020. XIA Z H. Aerodynamic uncertainty quantification by polynomial chaos and robust design optimization of turbomachinery blades[D]. Beijing:Peking University, 2020(in Chinese). [17] CUI J, TUCKER P G. Numerical study of purge and secondary flows in a low pressure turbine:GT2016-56789[R]. New York:ASME, 2016. [18] HU S T, ZHOU C, XIA Z H, et al. Large eddy simulation and CDNS investigation of T106C low-pressure turbine[J]. Journal of Fluids Engineering, 2018, 140(1):011108. [19] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605. [20] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906. [21] MENTER F R, SMIRNOV P E, LIU T, et al. A one-equation local correlation-based transition model[J]. Flow, Turbulence and Combustion, 2015, 95(4):583-619. [22] 罗天培,柳阳威,陆利蓬.低压涡轮叶栅流动中转捩模型的校验及改进[J].航空学报, 2013, 34(7):1548-1562. LUO T P, LIU Y W, LU L P. Transition model assessment and modification in low-pressure turbine cascade[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7):1548-1562(in Chinese). [23] 杨林,乔渭阳,罗华玲,等.低雷诺数高负荷低压涡轮叶型的气动设计[J].航空动力学报, 2013, 28(5):1019-1028. YANG L, QIAO W Y, LUO H L, et al. Aerodynamic design of highly-loaded blade in low-pressure turbine with low Reynolds number[J]. Journal of Aerospace Power, 2013, 28(5):1019-1028(in Chinese). [24] BAI T, LIU J Y, ZHANG W H, et al. Effect of surface roughness on the aerodynamic performance of turbine blade cascade[J]. Propulsion and Power Research, 2014, 3(2):82-89. [25] QU X, ZHANG Y F, LU X G, et al. The effect of endwall boundary layer and incoming wakes on secondary flow in a high-lift low-pressure turbine cascade at low Reynolds number[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(15):5637-5649. [26] ROACH P E. The generation of nearly isotropic turbulence by means of grids[J]. International Journal of Heat and Fluid Flow, 1987, 8(2):82-92. [27] SAMMUT C, WEBB G. Encyclopedia of machine learning[M]. Boston:Springer, 2010. |