[1] TSIEN H S. Superaerodynamics, mechanics of rarefied gases[J]. Journal of the Aeronautical Sciences, 1946, 13(12):653-664. [2] BIRD G A. Molecular gas dynamics[M]. Oxford:Clarendon Press, 1976. [3] XU K, HUANG J C. A unified gas-kinetic scheme for continuum and rarefied flows[J]. AIP Conference Proceedings, 2011, 1333(1):525-530. [4] 张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4):524689. ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524689(in Chinese). [5] 任峰, 高传强, 唐辉. 机器学习在流动控制领域的应用及发展趋势[J]. 航空学报, 2021, 42(4):524686. REN F, GAO C Q, TANG H. Machine learning for flow control:applications and development trends[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524686(in Chinese). [6] 张伟伟, 朱林阳, 刘溢浪, 等. 机器学习在湍流模型构建中的应用进展[J]. 空气动力学学报, 2019, 37(3):444-454. ZHANG W W, ZHU L Y, LIU Y L, et al. Progresses in the application of machine learning in turbulence modeling[J]. Acta Aerodynamica Sinica, 2019, 37(3):444-454(in Chinese). [7] TRACEY B D, DURAISAMY K, ALON-SO J J. A machine learning strategy to assist turbulence model development[C]//53rd AIAA Aerospace Sciences Meeting. Reston:AIAA, 2015. [8] WANG J X, WU J L, XIAO H. Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data[J]. Physical Review Fluids, 2017, 2(3):034603. [9] WU J L, XIAO H, PATERSON E. Physics-informed machine learning approach for augmenting turbulence models:A comprehensive framework[J]. Physical Review Fluids, 2018, 3(7):074602. [10] ZHU L Y, ZHANG W W, KOU J Q, et al. Machine learning methods for turbulence modeling in subsonic flows around airfoils[J]. Physics of Fluids, 2019, 31(1):015105. [11] LING J L, KURZAWSKI A, TEMPLETON J. Reynolds averaged turbulence modelling using deep neural networks with embedded invariance[J]. Journal of Fluid Mechanics, 2016, 807:155-166. [12] 李廷伟, 张莽, 赵文文, 等. 面向稀薄流非线性本构预测的机器学习方法[J]. 航空学报, 2021, 42(4):524386. LI T W, ZHANG M, ZHAO W W, et al. Machine learning method for correction of rarefied nonlinear constitutive relations[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524386(in Chinese). [13] ZHANG J, MA W J. Data-driven discovery of governing equatios for fluid dynamics based on molecular simulation[J]. Journal of Fluid Mechanics, 2020, 892:A5. [14] 李航. 统计学习方法[M]. 北京:清华大学出版社, 2012. LI H. Statistical learning method[M]. Beijing:Tsinghua University Press, 2012(in Chinese). [15] BREIMAN L. Random forests[J].Machine Learning, 2001, 45(1):5-32. [16] 许允之,王舒萍. 基于随机森林算法的徐州雾霾回归预测模型[Z]. 中国北京:20196. XU Y X, WANG S P. Regression prediction model of xuzhou haze based on stochastic forest algorithm[Z]. China Beiing:20196(in Chinese). [17] LI X, WANG Z J, WANG L Y, et al. A multi-dimensional context-aware recommendation approach based on improved random forest algorithm[J]. IEEE Access, 2018, 6:45071-45085. [18] EVANS J, WATERSON B, HAMILTON A. Forecasting road traffic conditions using a context-based random forest algorithm[J]. Transportation Planning and Technology, 2019, 42(6):554-572. [19] 常琦, 杨维希, 赵恒, 等. 基于多传感器的裂纹扩展监测研究[J]. 航空学报, 2020, 41(2):223336. CHANG Q, YANG W X, ZHAO H, et al. A multi-sensor based crack propagation monitoring research[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(2):223336(in Chinese). [20] 冯蕴雯, 潘维煌, 刘佳奇, 等. 基于机器学习的飞机动力装置运行可靠性[J]. 航空学报, 2021, 42(4):524732. FENG Y W, PAN W H, LIU J Q, et al. Operational reliability of aircraft power plant based on machine learning[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4):524732(in Chinese). [21] GEURTS P, ERNST D, WEHENKEL L. Extremely randomized trees[J]. Machine Learning, 2006, 63(1):3-42. [22] 刘沙, 王勇, 袁瑞峰, 等. 统一气体动理学方法研究进展[J]. 气体物理, 2019, 4(4):1-13. LIU S, WANG Y, YUAN R F, et al. Advance in unified methods based on gas-kinetic theory[J]. Physics of Gases, 2019, 4(4):1-13(in Chinese). [23] BHATNAGAR P L, GROSS E P, KROOK M. A model for collision processes in gases. I. small amplitude processes in charged and neutral one-component systems[J]. Physical Review, 1954, 94(3):511-525. [24] XIAO H, WU J L, LAIZET S, et al. Flows over periodic hills of parameterized geometries:A dataset for data-driven turbulence modeling from direct simulations[J]. Computers & Fluids, 2020, 200:104431. [25] JOHN B, GU X J, EMERSON D R. Effects of incomplete surface accommodation on non-equilibrium heat transfer in cavity flow:A parallel DSMC study[J]. Computers & Fluids, 2011, 45(1):197-201. |