[1] FAYYAD U, PIATETSKY-SHAPIRO G, SMYTH P. The KDD process for extracting useful knowledge from volumes of data[J]. Communications of the ACM, 1996, 39(11):27-34. [2] 张美英, 何杰. 时间序列预测模型研究综述[J]. 数学的实践与认识, 2011, 41(18):189-195. ZHANG M Y, HE J. Summary on time series forecasting model[J]. Mathematics in Practice and Theory, 2011, 41(18):189-195(in Chinese). [3] EZEKIEL M. Two methods of forecasting hog prices[J]. Journal of the American Statistical Association, 1927, 22(157):22-30. [4] MCLEOD A I, LI W K. Diagnostic checking ARMA time series models using squared-residual autocorrelations[J]. Journal of Time Series Analysis, 1983, 4(4):269-273. [5] 徐徐. 循环神经网络改进方法研究[D]. 上海:上海交通大学, 2017. XU X. Research and improvement of recurrent neural network[D]. Shanghai:Shanghai Jiao Tong University, 2017(in Chinese). [6] CAI X D, ZHANG N, VENAYAGAMOORTHY G K, et al. Time series prediction with recurrent neural networks trained by a hybrid PSO-EA algorithm[J]. Neurocomputing, 2007, 70(13-15):2342-2353. [7] HOCHREITER S. The vanishing gradient problem during learning recurrent neural nets and problem solutions[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1998, 6(2):107-116. [8] 郝世林. 基于LSTM的上甑酒醅温度预测模型研究[D]. 武汉:湖北工业大学, 2020. HAO S L. Research on fermented grains temperature prediction model of make wine robot based on LSTM[D]. Wuhan:Hubei University of Technology, 2020(in Chinese). [9] JIA G M, CHENG F Y, YANG J F, et al. Intelligent checking model of Chinese radiotelephony read-backs in civil aviation air traffic control[J]. Chinese Journal of Aeronautics, 2018, 31(12):2280-2289. [10] 章树军, 蓝善祯, 卜琪, 等. 基于深度学习的动作识别方法简述[J]. 中国传媒大学学报(自然科学版), 2019, 26(5):44-49, 43. ZHANG S J, LAN S Z, BU Q, et al. A survey of action recognition based on deep learning[J]. Journal of Communication University of China (Science and Technology), 2019, 26(5):44-49, 43(in Chinese). [11] 王志刚, 杨宁, 米禹丰. 基于动态时间规划和支持向量机的飞机机动动作识别方法[J]. 飞机设计, 2020, 40(4):35-40. WANG Z G, YANG N, MI Y F. Method on aircraft maneuver motion recognition based on dynamic time warping and support vector machine[J]. Aircraft Design, 2020, 40(4):35-40(in Chinese). [12] 张秀林, 刘嘉, 张杨, 等. 一种飞行员最优控制模型加权系数计算方法[J]. 飞行力学, 2019, 37(3):15-19. ZHANG X L, LIU J, ZHANG Y, et al. A method for calculating the weighting coefficient of pilot optimal control model[J]. Flight Dynamics, 2019, 37(3):15-19(in Chinese). [13] YUE Z J, LIU L, LONG T, et al. Virtual sensing method for monitoring vibration of continuously variable configuration structures using long short-term memory networks[J]. Chinese Journal of Aeronautics, 2020, 33(1):244-254. [14] 成双, 郭渊博. 基于LSTM网络的异常操作行为检测方法[J]. 信息工程大学学报, 2019, 20(1):122-128. CHENG S, GUO Y B. Abnormal operation behavior detection method based on LSTM[J]. Journal of Information Engineering University, 2019, 20(1):122-128(in Chinese). [15] 杨洪富, 贾晓亮. 基于LSTM的航空发动机排气温度预测[J]. 航空计算技术, 2018, 48(4):61-65. YANG H F, JIA X L. Aero engine exhaust gas temperature prediction based on LSTM[J]. Aeronautical Computing Technique, 2018, 48(4):61-65(in Chinese). [16] MIKOLOV T, KOPECKY J, BURGET L, et al. Neural network based language models for highly inflective languages[C]//2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE Press, 2009:4725-4728. [17] GRAVES A, MOHAMED A R, HINTON G. Speech recognition with deep recurrent neural networks[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE Press, 2013:6645-6649. [18] MIKOLOV T, JOULIN A, CHOPRA S, et al. Learning longer memory in recurrent neural networks[EB/OL]. arXiv preprint:1412.7753, 2014. [19] DING G, LEI D, YAO W. Aeroengine exhausted gas temperature prediction using process extreme learning machine[J]. Applied Mechanics and Materials, 2013, 423-426:2355-2362. [20] DU J, DAI L R, HUO Q. Synthesized stereo mapping via deep neural networks for noisy speech recognition[C]//2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2014:1764-1768. [21] XU Y, MO T, FENG Q W, et al. Deep learning of feature representation with multiple instance learning for medical image analysis[C]//2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway:IEEE Press, 2014:1626-1630. |