航空学报 > 2021, Vol. 42 Issue (4): 524708-524708   doi: 10.7527/S1000-6893.2020.24708

基于数据挖掘的飞行器气动布局设计知识提取

刘深深1,2, 陈江涛1,2, 桂业伟2, 唐伟3, 王安龄2, 韩青华2   

  1. 1. 空气动力学国家重点实验室, 绵阳 621000;
    2. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    3. 西南科技大学 环境友好能源材料国家重点实验室, 绵阳 621000
  • 收稿日期:2020-09-03 修回日期:2020-09-20 发布日期:2020-10-16
  • 通讯作者: 陈江涛 E-mail:chenjt02@sina.cn
  • 基金资助:
    国家自然科学基金(11702315);国家数值风洞工程

Knowledge discovery for vehicle aerodynamic configuration design using data mining

LIU Shenshen1,2, Chen Jiangtao1,2, GUI Yewei2, TANG Wei3, WANG Anling2, HAN Qinghua2   

  1. 1. State Key Laboratory of Aerodynamics, Mianyang 621000, China;
    2. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    3. State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621000, China
  • Received:2020-09-03 Revised:2020-09-20 Published:2020-10-16
  • Supported by:
    National Natural Science Foundation of China (11702315);National Numerical Windtunnel Project

摘要: 为了更深入地理解飞行器气动布局设计优化中多目标/多设计变量间的影响关系,提高优化模型的科学性及优化效率,对基于数据挖掘技术的飞行器气动布局隐含设计知识提取问题开展了探索研究。以高升阻比滑翔飞行器布局设计优化问题为例,基于当前比较有代表性的方差分析、等度量映射、决策树、自组织映射4类机器学习算法对气动布局优化设计中产生的中间数据进行了挖掘分析。对不同方法得到的升阻比、横/侧向稳定性及容积率4种目标性能间的权衡关系,目标性能与设计变量间的敏感性关系及产生较优布局外形的设计变量取值规则进行了综合对比分析,凝练形成了适用于该类飞行器的设计知识,同时对4种方法的特点及适用性进行了总结分析,给出了相关结论。

关键词: 气动布局优化设计, 数据挖掘, 知识提取, 等度量映射, 自组织映射, 决策树, 总变差分析

Abstract: To gain a deeper understanding of the relationship between multiple objectives and multiple design parameters in the optimization process of vehicle aerodynamic configuration design and improve the scientificity and efficiency of the optimization model, we study the knowledge discovery of aircraft aerodynamic configuration design based on data mining methods. Four machine learning methods including analysis of variance, decision tree, isometric mapping, and self-organizing map are applied to data mining for aerodynamic design space of a hypersonic glide vehicle configuration optimization problem. Trade-offs between four objective functions (lift-to-drag ratio, lateral/side stability and volumetric efficiency) and influences of the design variables on the objective functions obtained quantitatively and qualitatively by the four methods are presented and discussed. Meanwhile, the design rules for variable values to generate better results are also analyzed. The features of the four data mining techniques are discussed respectively and the design knowledge obtained which can be applied to hypersonic glide vehicle configuration design is summarized.

Key words: aerodynamic configuration optimization design, data mining, knowledge discovery, isometric mapping, self-organizing map, decision tree, analysis of variance

中图分类号: