航空学报 > 2018, Vol. 39 Issue (S1): 722203-722203   doi: 10.7527/S1000-6893.2018.22203

数据挖掘在运载火箭智能测试中的应用

李雷, 谢立, 张永杰, 巫琴   

  1. 上海宇航系统工程研究所, 上海 201109
  • 收稿日期:2018-03-22 修回日期:2018-05-07 出版日期:2018-12-30 发布日期:2018-05-07
  • 通讯作者: 谢立 E-mail:lixie.lx@gmail.com

Application of data mining in intelligence test of launch vehicles

LI Lei, XIE Li, ZHANG Yongjie, WU Qin   

  1. Aerospace System Engineering Shanghai, Shanghai 201109, China
  • Received:2018-03-22 Revised:2018-05-07 Online:2018-12-30 Published:2018-05-07

摘要: 针对运载火箭复杂系统的故障检测难以建立准确的数学模型的问题,研究了基于数据驱动的数据挖掘异常检测算法,对多种数据挖掘算法在运载火箭发动机异常检测的应用进行了研究和分析,提出了基于混合概率密度统计的多策略异常检测评价算法。该算法基于非监督学习的算法挖掘火箭发动机不同参数间的正常关联模型,火箭发动机早期的异常数据会引起正常关联模型的破坏,引入混合概率密度统计的多策略异常检测评价机制,可以有效屏蔽参数测量故障对系统故障检测的影响,从而更加准确给出系统异常程度。使用发动机历史试车数据作为样本进行特征模型的训练,使用一元、多元和混合概率密度模型对存在异常的发动机试车数据进行了实时异常检测的实验验证。实验结果表明,相比传统基于阈值和规则的异常检测算法,基于概率密度统计的多策略异常检测算法不仅可给出系统的正常和异常的状态,还可计算各参数和整个系统的异常值,为运载火箭进一步的故障诊断提供更加灵活的参考。

关键词: 故障诊断, 异常检测, 数据挖掘, 概率密度分布, 智能测试

Abstract: Considering the fact that modeling a complex system such as the launch vehicle is particularly difficult, anomaly detection methods based on data driven are studied. This paper proposes a multi-strategy anomaly detection method based on statistics of probability density distribution. The unsupervised learning method is used to excavate the model for normal correlation between different parameters of the rocket engine. As the early anomaly data of the rocket engine will cause damage to the normal correlation model, the multi strategy anomaly detection and evaluation mechanism is introduced to effectively shield the influence of parameter measurement faults on fault detection of the system, so that system anomaly can be detected more accurately. We use the historical data of engine tests as the training samples to train the characteristic models, and experimental verification of anomaly detection of engine test data in real time is carried out by using the one-element model, the multi-element model and the model based on hybrid probability density distribution. The result shows that compared with the traditional thresh and norm based anomaly detection methods, the multi-strategy anomaly detection method can give not only the normal ad anomaly states of the system, but also the anomaly scores of each parameter and the whole system, thus providing a more flexible reference for further fault diagnosis of launch vehicles.

Key words: fault diagnosis, anomaly detection, data mining, probability density distribution, intelligence test

中图分类号: