航空学报 > 2017, Vol. 38 Issue (5): 220401-220401   doi: 10.7527/S1000-6893.2017.220401

基于声发射的铝蜂窝板超高速撞击损伤模式识别方法

刘源, 庞宝君, 迟润强, 才源   

  1. 哈尔滨工业大学 航天学院, 哈尔滨 150080
  • 收稿日期:2016-05-05 修回日期:2017-02-13 出版日期:2017-05-15 发布日期:2017-03-03
  • 通讯作者: 迟润强 E-mail:chirq@hit.edu.cn
  • 基金资助:

    国家"十二五"空间碎片专项(K0203210);中央高校基本科研业务费专项资金(HIT.NSRIF.2015029)

A damage pattern recognition method for hypervelocity impact on aluminum honeycomb core sandwich based on acoustic emission

LIU Yuan, PANG Baojun, CHI Runqiang, CAI Yuan   

  1. School of Astronautics, Harbin Institute of Technology, Harbin 150080, China
  • Received:2016-05-05 Revised:2017-02-13 Online:2017-05-15 Published:2017-03-03
  • Supported by:

    National Special Project for Space Debris during the Twelfth Five-year Plan Period (K0203210);the Fundamental Research Funds for Central Universities (HIT.NSRIF.2015029)

摘要:

为通过声发射技术识别铝合金蜂窝板超高速撞击(HVI)的损伤状态,提出一种基于神经网络的损伤模式识别方法。通过超高速撞击实验获取声发射信号,结合精确源定位技术、时频分析技术、小波分析技术及模态声发射技术,提出了10个与损伤相关的特征参数,通过非参数检验分析其与损伤的关系,设计了一种基于贝叶斯正则化BP神经网络的超高速撞击损伤模式识别方法。建立最优网络模型,通过不同参数组合识别能力分析,优选出2种特征参数组合,通过非同源样本对其损伤模式识别能力进行验证。结果表明:传播距离与损伤模式无关,却是识别损伤模式的重要参数;125~250 kHz频域的自动加窗小波能量比会降低损伤模式的识别能力;采用贝叶斯正则化的BP神经网络可以较好地识别蜂窝板超高速撞击损伤模式,参数组合为传播距离、上升时间、持续时间、截止频率、4个自动加窗小波能量比及小波能量熵,共9个参数,对任意选取非同源样本识别错分率仅为9.38%。

关键词: 空间碎片, 超高速撞击, 声发射, 损伤模式识别, 神经网络

Abstract:

A damage pattern recognition method based on neural network is proposed to recognize the damage state of aluminum honeycomb core sandwich under hypervelocity impact (HVI) through acoustic emission. A variety of experimental signals are obtained, 10 characteristic parameters related to damage are presented by test of nonparametric analysis the relationship with damage pattern, combining with precise source localization, time-frequency analysis, wavelet transformation and modal acoustic emission technology. The BP neural net mode based on Bayesian regularization is established by analyzing the relationship with damage pattern using nonparametric analysis. After establishing the optimal network model, two optimal combinations are selected by analyzing the recognition ability of different parameter combinations, the damage pattern recognition ability is verified with non-same source sample. The result shows that propagation distance is a significant parameter but irrelevant to damage pattern. Automatic window wavelet energy ratio within 125-250 kHz frequency range decrease the ability of damage pattern recognition. Using a Bayesian regularization neural network with combination of 9 parameters, including propagation distance, rise time, hold time, cut-off frequency, 4 kinds of automatic window wavelet energy ratio and wavelet energy entropy, presents 9.38% wrong point rate to a group of random non-same source sample.

Key words: space debris, hypervelocity impact (HVI), acoustic emission, damage pattern recognition, neural network

中图分类号: