[1] 张兆宁, 张佳. 大面积航班延误发生的预测方法[J]. 系统工程, 2020, 38(4):115-121. ZHANG Z N, ZHANG J. Prediction method for the occurrence of large-scale flight delays[J]. Systems Engineering, 2020, 38(4):115-121(in Chinese). [2] 高旗, 初建宇, 李印凤. 基于PSO-BP神经网络的终端区拥堵等级预测模型[J]. 航空计算技术, 2019, 49(6):57-61. GAO Q, CHU J Y, LI Y F. Prediction model of congestion level in terminal area based onPSO-BP neural network[J]. Aeronautical Computing Technique, 2019, 49(6):57-61(in Chinese). [3] 杨东玲. 基于ADS-B的4D航迹预测及应用[D]. 天津:中国民航大学, 2017. YANG D L. 4D track prediction based on ADS-B and application[D]. Tianjin:Civil Aviation University of China, 2017(in Chinese). [4] 刘继新, 曾逍宇, 尹旻嘉, 等. 基于累积logistic回归模型的管制员应激程度预测[J]. 重庆交通大学学报(自然科学版), 2019, 38(3):97-102, 115. LIU J X, ZENG X Y, YIN M J, et al. Stress level prediction of controller based on cumulative logistic regression model[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(3):97-102, 115(in Chinese). [5] VANDERHAEGEN F. Mirroreffect based learning systems to predict human errors-application to the air traffic control[J]. IFAC-Papers OnLine, 2016, 49(19):295-300. [6] CORVER S C, UNGER D, GROTE G. Predicting air traffic controller workload[J]. Human Factors:the Journal of the Human Factors and Ergonomics Society, 2016, 58(4):560-573. [7] 刘大伟, 吕元娜, 余智华. 一种改进的复杂网络链路预测算法[J]. 小型微型计算机系统, 2016, 37(5):1071-1074. LIU D W, LV Y N, YU Z H. An improved link prediction algorithm for complex networks[J]. Journal of Chinese Computer Systems, 2016, 37(5):1071-1074(in Chinese). [8] LIU B, XU S, LI T, et al. Quantifying the effects of topology and weight for link prediction in weighted complex networks[J]. Entropy, 2018, 20(5):363. [9] LÜ L, PAN L M, ZHOU T, et al. Toward link predictability of complex networks[J]. PNAS, 2015, 112(8):2325-2330. [10] LI Y M, ZHAO L M, YU Z Y, et al. Traffic flow prediction with big data:a learning approach based on SIS-complex networks[C]//2017 IEEE 2nd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Piscataway:IEEE Press, 2017. [11] 伍杰华, 沈静, 周蓓. 改进朴素贝叶斯模型的复杂网络关系预测[J]. 计算机工程与科学, 2017, 39(10):1825-1831. WU J H, SHEN J, ZHOU B. An enhanced naiveBayesian relationship prediction model in complex networks[J]. Computer Engineering & Science, 2017, 39(10):1825-1831(in Chinese). [12] 王超, 朱明. 基于复杂网络表征ATF时间序列动力学特性[J]. 计算机仿真, 2018, 35(6):81-85. WANG C, ZHU M. Characterizing dynamic property of airtraffic flow time series based on complex network. computer engineering and applications[J]. Computer Simulation, 2018, 35(6):81-85(in Chinese). [13] 徐肖豪, 李善梅. 空中交通拥挤的识别与预测方法研究[J]. 航空学报, 2015, 36(8):2753-2763. XU X H, LI S M. Identification and prediction of air traffic congestion[J]. ActaAeronautica et Astronautica Sinica, 2015, 36(8):2753-2763(in Chinese). [14] BULDYREV S V, PARSHANI R, PAUL G, et al. Catastrophic cascade of failures in interdependent networks[J]. Nature, 2010, 464(7291):1025-1028. [15] 李昂, 聂党民, 温祥西, 等. 管制-飞行状态相依网络模型及特性分析[J]. 北京航空航天大学学报, 2020, 46(6):1204-1213. LI A, NIE D M, WEN X X, et al. Control-aircraft state interdependent network model and characteristic analysis[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6):1204-1213(in Chinese). [16] 王新迎, 韩敏. 基于极端学习机的多变量混沌时间序列预测[J]. 物理学报, 2012, 61(8):080507. WANG X Y, HAN M. Multivariate chaotic time series prediction based on extreme learning machine[J]. ActaPhysica Sinica, 2012, 61(8):080507(in Chinese). [17] 周永道, 马洪, 吕王勇, 等. 基于多元局部多项式方法的混沌时间序列预测[J]. 物理学报, 2007, 56(12):6809-6814. ZHOU Y D, MA H, LÜ W Y, et al. Prediction of the chaotic time series using multivariate local polynomial regression[J]. Acta Physica Sinica, 2007, 56(12):6809-6814(in Chinese). [18] 毛文涛, 蒋梦雪, 李源, 等. 基于异常序列剔除的多变量时间序列结构化预测[J]. 自动化学报, 2018, 44(4):619-634. MAO W T, JIANG M X, LI Y, et al. Structural prediction of multivariate time series through outlier elimination[J]. ActaAutomatica Sinica, 2018, 44(4):619-634(in Chinese). [19] THISSEN U, VAN BRAKEL R, DE WEIJER A P, et al. Using support vector machines for time series prediction[J]. Chemometrics and Intelligent Laboratory Systems, 2003, 69(1-2):35-49. [20] 陈建婷. 一种基于深度学习的数据预测方法[J]. 电子技术与软件工程, 2019(6):151-152. CHEN J T.Data prediction method based on deep learning[J]. Electronic Technology & Software Engineering, 2019(6):151-152(in Chinese). [21] 宋捷, 杨磊, 胡明华, 等. 基于深度学习的航班起降延误预测方法[J]. 航空计算技术, 2020, 50(3):30-34. SONG J, YANG L, HU M H, et al. Departure and landing delay prediction based on deep learning technique[J]. Aeronautical Computing Technique, 2020, 50(3):30-34(in Chinese). [22] ZHANG Q C, YANG L T, YAN Z, et al. An efficient deep learning model to predict cloud workload for industry informatics[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7):3170-3178. [23] NIELSEN AA K, VOIGT C A. Deep learning to predict the lab-of-origin of engineered DNA[J]. Nature Communications, 2018, 9:3135. [24] 张进, 胡明华, 张晨, 等. 空域复杂性建模[J]. 南京航空航天大学学报, 2010, 42(4):454-460. ZHANG J, HU M H, ZHANG C, et al. Airspace complexity modeling[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(4):454-460(in Chinese). [25] KIM T, KING B R. Time series prediction using deep echo state networks[J]. Neural Computing and Applications, 2020, 32(23):17769-17787. |