[1] KUCZERA H, SACHER P. Reusable space transportation systems[M].Heidelberg:Springer, 2011. [2] SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles[J]. Progress in Aerospace ences, 2016, 84:1-28. [3] SMITH P M. A review of the competitive space transportation industry, from provider options to customer needs[C]//2018 AIAA SPACE and Astronautics Forum and Exposition. Reston:AIAA, 2018. [4] KALERY A Y, SOROKIN I V, TYURIN M V. Human space exploration beyond the international space station:Role of relations of human, machine and the "Earth"[J]. Acta Astronautica, 2010, 67(7-8):925-933. [5] 杨雷, 张柏楠, 郭斌, 等. 新一代多用途载人飞船概念研究[J]. 航空学报, 2015, 36(3):703-713. YANG L, ZHANG B N, GUO B, et al. Concept definition of new-generation multi-purpose manned spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):703-713(in Chinese). [6] 冯韶伟, 马忠辉, 吴义田,等. 国外运载火箭可重复使用关键技术综述[J]. 导弹与航天运载技术, 2014(5):82-86. FENG S W, MA Z H, WU Y T, et al. Survey and review on key technologies of reusable launch vehicle abroad[J]. Missiles and Space Vehicles, 2014(5):82-86(in Chinese). [7] 崔乃刚, 吴荣, 韦常柱,等. 垂直起降可重复使用运载器发展现状与关键技术分析[J]. 宇航总体技术, 2018(2):27-42. CUI N G, WU R, WEI C Z, et al. Development and key technologies of vertical takeoff vertical landing reusable launch vehicle[J]. Astronautical Systems Engineering Technology, 2018(2):27-42(in Chinese). [8] 徐大富, 张哲, 吴克, 等. 垂直起降重复使用运载火箭发展趋势与关键技术研究进展[J]. 科学通报, 2016, 61:3453-3463. XU D F, ZHANG Z, WU K, et al. Recent progress on development trend and key technologies of vertical take-off vertical landing reusable launchvehicle[J]. Chin Sci Bull, 2016, 61:3453-3463(in Chinese). [9] Vertical launch spaceport[EB/OL].[2020-04-22]. http://www.darpa.mil. [10] KANIA P. The German hypersonics technology program-overview[C]//International Aerospace Planes and Hypersonics Technologies, 1995. [11] HIRSCHEL E. The hypersonics technology development and verification strategy of the German Hypersonics Technology Programme[C]//5th International Aerospace Planes and Hypersonics Technologies Conference, 1993. [12] MOWRY E C, CHRISTENSEN C B, SMITH P. The global launch industry:Progress and evolution[J]. Recent Successful Satellite Systems:Visions of the Future, 2016:405. [13] WEINGARTNER S, KUCZERA H. Selection and design guidelines for future space transportation systems[C]//International Aerospace Planes &Hypersonics Technologies Conference, 2013. [14] HEITMEIR F, LEDERER R, HERRMANN O. German hypersonic technology programmeairbreathing propulsion activities[C]//Symposium on Multidisciplinary Analysis & Optimization, 1992. [15] ZELLNER B, STERR W, HERRMANN O. Integration of turbo-expander and turbo-ramjet engines in hypersonic vehicles[J]. Journal of Engineering for Gas Turbines & Power, 1994, 116(1):90. [16] HIRSCHEL E H.Aerothermodynamic challenges of the Saenger space-transportation system[R]. 1991. [17] SMITH J. Could air force space command benefit from commercial space companies like SpaceX, XCOR, Virgin Galactic, and Bigelow Aerospace?[C]//AIAA SPACE 2011 Conference & Exposition. Reston:AIAA, 2011. [18] THOMPSON T, WEEKS D, WALKER S, et al. DARPA/USAF falcon program update on the SpaceX maiden launch, mishap investigation and return to flight[C]//AIAA SPACE 2007 Conference & Exposition. Reston:AIAA, 2007. [19] SPISZ T S, TAYLOR J C, GIBSON D, et al. Processing infrared imagery of the spacex falcon first stage reentry during CRS-4 mission[C]//AIAA SPACE and Astronautics Forum and Exposition. Reston:AIAA, 2017. [20] Service to earth orbit, the moon, mars and beyond[EB/OL].[2019-12-18].http://www.spacex.com/starship. [21] Intercontinental passenger point-to-point transport system[EB/OL].[2019-12-18]. https://www.gravitationinnovation.com. [22] Starship assembly site[EB/OL].[2019-12-18]. https://www.nasaspaceflight.com. [23] SIPPEL M.SpaceLiner technical progress and mission definition[C]//AIAA International Space Planes & Hypersonic Systems & Technologies Conference. Reston:AIAA, 2015. [24] FERRI A. Review of scramjet propulsion technology[J]. Journal of Aircraft, 2012, 5(1):3-10. [25] CURRAN ET. Scramjet engines:The first forty years[J]. Journal of Propulsion & Power,2001, 17(6):1138-1148. [26] YENTSCH R J, GAITONDE D V. Numerical investigation of dual-mode operation in a rectangular scramjet flowpath[J]. Journal of Propulsion & Power,2014, 30(2):474-489. [27] AVERY W H, DUGGER G L. Hypersonic air breathing propulsion[M]. 1994. [28] SERRANI A, ZINNECKER A M, FIORENTINI L, et al. Integrated adaptive guidance and control of constrained nonlinear air-breathing hypersonic vehicle models[C]//2009 American Control Conference, 2009. [29] FIORENTINI L, SERRANI A, BOLENDER M A,et al. Robust nonlinear sequential loop closure control design for an air-breathing hypersonic vehicle model[C]//American Control Conference, 2008. [30] HE YY, LE J L, NI H L. Numerical and experimental study of airbreathing hypersonic airframe/propulsion integrative vehicle[J]. Journal of Experiments in Fluid Mechanics, 2007,2(7):29-34. [31] TAUBER M E, MENEES G P, ADELMAN H G. Aerothermodynamics of transatmospheric vehicles[J]. Journal of Aircraft,1987, 24(9):594-602. [32] LOPEZREIG J, REBOLO R, MATESANZ A, et al. Integration of hypersonic aerothermodynamics design methods[C]//Space Plane and Hypersonic Systems and Technology Conference,2013. |