[1] 耿丹萍. 基于双向耦合的高超声速壁板热气动弹性问题研究[D]. 南京:南京航空航天大学, 2012:1-2. GENG D P. Aerothermal-aeroelastic two-way coupling based aerothermoelastic analysis of an insulated panel in hypersonic flow[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012:1-2(in Chinese). [2] CULLER A J, MCNAMARA J J. Studies on fluid-thermal-structural coupling for aerothermoelasticity in hypersonic flow[J]. AIAA Journal, 2010, 48(8):1721-1738. [3] CULLER A J, MCNAMARA J J. Impact of fluid-thermal-structural coupling on response prediction of hypersonic skin panels[J]. AIAA Journal, 2011, 49(11):2393-2406. [4] 陈鑫. 高超声速飞行器气动-热-结构建模及模型降阶研究[D]. 北京:北京理工大学, 2015. CHEN X. Studies on aerodynamic-structural-thermal modeling and reduced order modeling of hypersonic vehicles[D]. Beijing:Beijing Institute of Technology, 2015(in Chinese). [5] 季卫栋. 高超声速气动力/热/结构多场耦合问题数值模拟技术研究[D]. 南京:南京航空航天大学, 2016:102-116. JI W D. Numerical simulation of hypersonic fluid-thermal-structural coupled problem[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016:102-116(in Chinese). [6] 徐敏,安效民. 空气与气体动力学基础[M]. 西安:西北工业大学出版社, 2016:90-101. XU M, AN X M. Principle of aerodynamics[M]. Xi'an:Northwestern Polytechnical University Press, 2016:90-101(in Chinese). [7] BAILIE J A, MCFEELY J E. Panel flutter in hypersonic flow[J]. AIAA Journal, 1968, 6(2):332-337. [8] DOWELL E H. Nonlinear oscillations of a fluttering plate. II[J]. AIAA Journal, 1967, 5(10):1856-1862. [9] MCNAMARA J J, GOGULAPATI A, FRIEDMANN P P, et al. Approximate modeling of unsteady aerodynamic loads in hypersonic aeroelasticity[C]//Proceedings of the International Forum on Aeroelasticity and Structural Dynamics, 2007. [10] THORNTON E A. Thermal structures for aerospace applications[M].Reston:AIAA, 1996:253-284. [11] XIE D, XU M, DAI H H, et al. New look at nonlinear aerodynamics in analysis of hypersonic panel flutter[J]. Mathematical Problems in Engineering, 2017, 2017:1-13. [12] ECKET E R G. Engineering relations for heat transfer and friction in high-velocity laminar and turbulent boundary-layer flow over surfaces with constant pressure and temperature[J]. Transactions of the ASME, 1956, 78(6):1273-1283. [13] ZOBY E V, GRAVES R A. Comparison of turbulent prediction methods with ground and flight test heating data[J]. AIAA Journal, 1977, 15(7):901-902. [14] MYERS D E. Parametric weight comparison of advanced metallic, ceramic tile, and ceramic blanket thermal protection systems[M]. Washington,D.C.:NASA, 2000. [15] ANDERSON D, TANNEHILL J C, PLETCHER R H. Computational fluid mechanics and heat transfer[M]. Boca Raton:CRC Press, 2016. [16] XIE D, DONG B, JING X J. Effect of thermal protection system size on aerothermoelastic stability of the hypersonic panel[J]. Aerospace Science and Technology, 2020, 106:106170. [17] US DOD. Metallic materials and elements for aerospace vehicle structures[R].Washington,D.C.:United Sta-tes Department of Defense,1998. [18] 马汉东. 高超声速技术项目"Hyper-X"气动研究方法学[J]. 力学与实践, 2014, 36(3):261-268, 277. MA H D. Methodology of aerodynamic research for hypersonic technical project "hyper-X"[J]. Mechanics in Engineering, 2014, 36(3):261-268, 277(in Chinese). [19] 唐和根,全刚,张同彤. 一定高度上大气密度的计算方法[J]. 计算机工程与应用, 2016, 52(SI):97-100. TANG H G, QUAN G, ZHANG T T. Calculate method of atmospheric density at certain altitude[J]. Computer Engineering and Applications, 2016, 52(SI):97-100(in Chinese). [20] 李佳伟, 王江峰, 程克明, 等. 高超声速全机外形气动加热与结构传热快速计算方法[J]. 空气动力学学报, 2019, 37(6):956-965. LI J W, WANG J F, CHENG K M, et al. Rapid method for calculating aero-heating coupled with structure heat transfer on hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2019, 37(6):956-965(in Chinese). [21] 张志鸿. 美国空间军事系统发展新动向[J]. 现代防御技术, 2006, 34(5):1-12. ZHANG Z H. New trend in development of US space military system[J]. Modern Defence Technology, 2006, 34(5):1-12(in Chinese). [22] 胡雨濛. 近空间高超声速气动热的数值模拟[D]. 北京:北京交通大学, 2018:2-4. HU Y M. Numerical simulation of aerodynamic heating in hypersonic flow in near space[D]. Beijing:Beijing Jiaotong University, 2018:2-4(in Chinese). |