[1] |
BILLIG F S. Research on supersonic combustion[J]. Journal of Propulsion and Power, 1993, 9(4):499-514.
|
[2] |
JU Y G, SUN W T. Plasma assisted combustion:Dynamics and chemistry[J]. Progress in Energy and Combustion Science, 2015, 48:21-83.
|
[3] |
DOOLEY S, WON S H, HEYNE J, et al. The experimental evaluation of a methodology for surrogate fuel formulation to emulate gas phase combustion kinetic phenomena[J]. Combustion and Flame, 2012, 159(4):1444-1466.
|
[4] |
ZHU S H, XU X, JI P F. Flame stabilization and propagation in dual-mode scramjet with staged-strut injectors[J]. AIAA Journal, 2017, 55(1):171-179.
|
[5] |
ZHANG Y, ZHU S H, CHEN B, et al. Hysteresis of mode transition in a dual-struts based scramjet[J]. Acta Astronautica, 2016, 128:147-159.
|
[6] |
ZHU S H, XU X, YANG Q C, et al. Intermittent back-flash phenomenon of supersonic combustion in the staged-strut scramjet engine[J]. Aerospace Science and Technology, 2018, 79:70-74.
|
[7] |
ZHANG J L, CHANG J T, MA J C, et al. Investigation of flame establishment and stabilization mechanism in a kerosene fueled supersonic combustor equipped with a thin strut[J]. Aerospace Science and Technology, 2017, 70:152-160.
|
[8] |
MASUMOTO R, TOMIOKA S, KUDO K, et al. Experimental study on combustion modes in a supersonic combustor[J]. Journal of Propulsion and Power, 2011, 27(2):346-355.
|
[9] |
JU Y G, SUN W T. Plasma assisted combustion:Progress, challenges, and opportunities[J]. Combustion and Flame, 2015, 162(3):529-532.
|
[10] |
LI F, YU X L, TONG Y G, et al. Plasma-assisted ignition for a kerosene fueled scramjet at Mach 1.8[J]. Aerospace Science and Technology, 2013, 28(1):72-78.
|
[11] |
CAI Z, ZHU J J, SUN M B, et al. Spark-enhanced ignition and flame stabilization in an ethylene-fueled scramjet combustor with a rear-wall-expansion geometry[J]. Experimental Thermal and Fluid Science, 2018, 92:306-313.
|
[12] |
FENG R, LI J, WU Y, et al. Experimental investigation on gliding arc discharge plasma ignition and flame stabilization in scramjet combustor[J]. Aerospace Science and Technology, 2018, 79:145-153.
|
[13] |
LI X H, YANG L C, PENG J B, et al. Cavity ignition of liquid kerosene in supersonic flow with a laser-induced plasma[J]. Optics Express, 2016, 24(22):25362.
|
[14] |
AN B, WANG Z G, YANG L C, et al. Experimental investigation on the impacts of ignition energy and position on ignition processes in supersonic flows by laser induced plasma[J]. Acta Astronautica, 2017, 137:444-449.
|
[15] |
KHODATAEV K V. Microwave discharges and possible applications in aerospace technologies[J]. Journal of Propulsion and Power, 2008, 24(5):962-972.
|
[16] |
BAUROV A Y, SHIBKOVA L V, SHIBKOV V M, et al. External combustion of high-speed multicomponent hydrocarbon-air flow under conditions of low-temperature plasma[J]. Moscow University Physics Bulletin, 2013, 68(4):293-298.
|
[17] |
SHIBKOV V M, SHIBKOVA L V, KARACHEV A A, et al. The spatial-temporal evolution of combustion under conditions of low temperature discharge plasma of liquid alcohol injected into an air stream[J]. Moscow University Physics Bulletin, 2012, 67(1):138-142.
|
[18] |
SHIBKOV V M, SHIBKOVA L V, GROMOV V G, et al. Influence of surface microwave discharge on ignition of high-speed propane-air flows[J]. High Temperature, 2011, 49(2):155-167.
|
[19] |
SHIBKOV V M, SHIBKOVA L V. Parameters of the flame due to surface-microwave discharge-initiated inflammation of thin alcohol films[J]. Technical Physics, 2010, 55(1):58-65.
|
[20] |
BABUSHOK V I, DELUCIA F C, GOTTFRIED J L, et al. Double pulse laser ablation and plasma:Laser induced breakdown spectroscopy signal enhancement[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2006, 61(9):999-1014.
|
[21] |
MICHAEL J B, DOGARIU A, SHNEIDER M N, et al. Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures[J]. Journal of Applied Physics, 2010, 108(9):093308.
|
[22] |
WOLK B, DEFILIPPO A, CHEN J Y, et al. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber[J]. Combustion and Flame, 2013, 160(7):1225-1234.
|
[23] |
IKEDA Y, NISHIYAMA A, KANEKO M. Microwave enhanced ignition process for fuel mixture at elevated pressure of 1 MPa:AIAA-2009-0223[R]. Reston, VA:AIAA, 2009.
|
[24] |
ELSABBAGH M, KADO S, IKEDA Y, et al. Measurements of rotational temperature and density of molecular nitrogen in spark-plug assisted atmospheric-pressure microwave discharges by rotational Raman scattering[J]. Japanese Journal of Applied Physics, 2011, 50(7):076101.
|
[25] |
FRIDMAN A, NESTER S, KENNEDY L A, et al. Gliding arc gas discharge[J]. Progress in Energy and Combustion Science, 1999, 25(2):211-231.
|
[26] |
孟宇,顾洪斌,张新宇. 微波对超声速燃烧火焰结构的影响[J]. 航空学报, 2019, 40(12):123224. MENG Y, GU H B, ZHANG X Y. Influence of microwave on structure of supersonic combustion flame[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(12):123224(in Chinese).
|
[27] |
WANG Z P, GU H B, CHENG L W, et al. CH* luminance distribution application and a one-dimensional model of the supersonic combustor heat release quantization[J]. International Journal of Turbo & Jet-Engines, 2019, 36(1):45-50.
|
[28] |
RAO X, HEMAWAN K, WICHMAN I, et al. Combustion dynamics for energetically enhanced flames using direct microwave energy coupling[J]. Proceedings of the Combustion Institute, 2011, 33(2):3233-3240.
|