[1] MILLUZZO J I, LEISHMAN J G. Vortical sheet behavior in the wake of a rotor in ground effect[J]. AIAA Journal, 2017, 55(1):24-35. [2] SUGIURA M, TANABE Y, SUGAWARA H, et al. Numerical simulations and measurements of the helicopter wake in ground effect[J]. Journal of Aircraft, 2017, 54(1):209-218. [3] WADCOCK A J, EWING L A, SOLIS E, et al. Rotorcraft downwash flow field study to understand the aerodynamics of helicopter brownout[C]//Proceedings of the American Helicopter Society Southwest Region Technical Specialists Meeting. Alexandria, VA:AHS, 2008:1-27. [4] PHILLIPS C, KIM H W, BROWN R E. The flow physics of helicopter brownout[C]//Presented at the American Helicopter Society 66th Annual Forum. Alexandria, VA:AHS, 2010:1273-1291. [5] BETZ A. The ground effect on lifting propellers:NACA-TM-836[R]. Washington, D. C.:NACA, 1937. [6] CHEESEMAN I C, BENNETT W E. The effect of the ground on a helicopter rotor in forward flight:R&M-3021[R]. London:ARC, 1955. [7] ROSSOW V J. Effect of ground and/or ceiling planes on thrust of rotors in hover:NASA-TM-86754[R]. Washington, D.C.:NASA, 1985. [8] 何承健, 高正. 贴地飞行的旋翼尾迹研究[J]. 航空学报, 1986, 7(4):325-331. HE C J, GAO Z. A study of the rotor wake in nap of the earth[J]. Acta Aeronautica et Astronautica Sinica, 1986, 7(4):325-331(in Chinese). [9] DUWALDT F A. Wakes of lifting propellers (rotors) in-ground-effect:CAL BB-1665-S-3[R]. Washington, D.C.:Cornell Aeronautical Laboratory, 1966. [10] FERGUSON S W. Rotorwash analysis handbook, volume I development and analysis:DOT/FAA/RD-93/31[R]. Washington, D. C.:Federal Aviation Administration, 1994. [11] PRESTON J R, TROUTMAN S, KEEN E, et al. Rotorwash operational footprint modeling:RDMRAF-14-02[R]. Middlesex:U.S. Army RDECOM, 2014. [12] QUACKENBUSH T R, WACHSPRESS D A. Enhancements to a new free wake hover analysis:NASA-CR-177523[R]. Washington, D. C.:NASA, 1989. [13] WACHSPRESS D A, WHITEHOUSE G R, KELLER J D, et al. A high fidelity brownout model for real-time flight simulations and tranners[C]//American Helicopter Society 65th Annual Forum. Alexandria, VA:AHS, 2009:1281-1304. [14] SYAL M, LEISHMAN J G. Modeling of bombardment ejections in the rotorcraft brownout problem[J]. AIAA Journal, 2013, 51(4):849-866. [15] PHILLIPS C, BROWN R E. Eulerian simulation of the fluid dynamics of helicopter brownout[J]. Journal of Aircraft, 2009, 46(4):1416-1429. [16] ZHAO J G, HE C J. Physics-based modeling of viscous ground effect for rotorcraft applications[J]. Journal of the American Helicopter Society, 2015, 60(3):1-13. [17] GRIFFITHS D A, ANANTHAN S, LEISHMAN J G. Predictions of rotor performance in ground effect using a free-vortex wake model[J]. Journal of the American Helicopter Society, 2005, 50(4):302-314. [18] 辛冀, 李攀, 陈仁良. 地面效应中悬停旋翼的自由尾迹计算[J]. 航空学报, 2012, 33(12):2161-2170. XIN J, LI P, CHEN R L. Free-wake analysis of hovering rotor in ground effect[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2161-2170(in Chinese). [19] LAKSHMINARAYAN V K, KALRA T S, BAEDER J D. Detailed computational investigation of a hovering microscale rotor in ground effect[J]. AIAA Journal, 2013, 51(4):893-909. [20] CROZON C, STEIJL R, BARAKOS G N. Numerical study of helicopter rotors in a ship airwake[J]. Journal of Aircraft, 2014, 51(6):1813-11832. [21] 朱明勇, 招启军,王博. 基于CFD和混合配平算法的直升机旋翼地面效应模拟[J]. 航空学报, 2016, 37(8):2539-2551. ZHU M Y, ZHAO Q J, WANG B. Simulation of helicopter rotor in ground effect based on CFD method and hybrid trim algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(8):2539-2551(in Chinese). [22] TAN J F, WANG H W. Simulating unsteady aerodynamics of helicopter rotor with panel/viscous vortex particle method[J]. Aerospace Science and Technology, 2013, 30(1):255-268. [23] 谭剑锋, 王浩文, 吴超, 等. 基于非定常面元/黏性涡粒子混合法的旋翼/平尾非定常气动干扰研究[J]. 航空学报, 2014, 35(3):643-656. TAN J F, WANG H W, WU C, et al. Rotor/empennage unsteady aerodynamic interaction with unsteady panel/viscous vortex particle hybrid method[J]. Acta Aeronautica et Astronautica Sinica, 2014,35(3):643-656(in Chinese). [24] 谭剑锋. 直升机旋翼对尾桨非定常气动载荷的影响[J]. 航空学报, 2015, 36(10):3228-3240. TAN J F. Influence of helicopter rotor on tail rotor unsteady aerodynamic loads[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3228-3240(in Chinese). [25] GREENGARD L, ROKHLIN V. A fast algorithm for particle simulations[J]. Journal of Computational Physics, 1997, 135(2):280-292. [26] KOUMOUTSAKOS P, LEONARD A, PEPIN F. Boundary conditions for viscous vortex method[J]. Journal of Computational Physics, 1994, 113:52-61. [27] PLOUMHANS P, DAENINCK G, WINCKELMANS G. Simulation of three-dimensional bluff-body flows using the vortex particle and boundary element methods[J]. Flow, Turbulence and Combustion, 2004, 73:117-131. [28] PONCET P. Topological aspects of three-dimensional wakes behind rotary oscillating cylinders[J]. Journal of Fluid Mechanics, 2014, 517:27-53. [29] COLAGROSSI A, GRAZIANI G, PULVIRENTI M. Particles for fluids:SPH versus vortex methods[J]. Mathematics and Mechanics of Complex Systems, 2014, 2(1):45-70. [30] PLOUMHANS P, WINCKELMANS G S. Vortex methods for high-resolution simulations of viscous flow past bluff bodies of general geometry[J]. Journal of Computational Physics, 2000, 165:354-406. [31] PLOUMHANS P, WINCKELMANS G S, SALMON J K, et al. Vortex methods for direct numerical simulation of three-dimensional bluff body flow:Application to the sphere at Re=300, 500, and 1000[J]. Journal of Computational Physics, 2002, 178:427-463. [32] LIGHT J S. Tip vortex geometry of a hovering helicopter rotor in ground effect[J]. Journal of the American Helicopter Society, 1993, 38(2):34-42. [33] FILIPPONE A, BAKKER R, BASSET P M, et al. Rotor wake modelling in ground effect conditions[C]//Presented at the 37th European Rotorcraft Forum, 2011:29-40. [34] LEE T E, LEISHMAN J G, RAMASAMY M. Fluid dynamics of interacting blade tip vortices with a ground plane[J]. Journal of the American Helicopter Society, 2010, 55(2):22005-22116. [35] RAMASAY M, YAMAUCHI G K. Using model-scale tandem-rotor measurements in ground effect to understand full-scale CH-47D outwash[J]. Journal of the American Helicopter Society, 2017, 62(1):1-14. |