[1] CHERUVU N, CHAN K, LEVERANT G. Blade life management:Coating systems[R]. EPRI, 2002. [2] SEHITOGLU H. Constraint effect in thermo-mechanical fatigue[J]. La Revue Du Praticien, 1985, 24(51):221-226. [3] SEHITOGLU H, BOISMIER D A. Thermo-mechanical fatigue of Mar-M247:Part Ⅱ-Life prediction[J]. Journal of Engineering Materials & Technology, 1990, 112(1):80-89. [4] BOISMIER D A, SEHITOGLU H. Thermo mechanical fatigue of Mar-M247:Part I-Experiments[J]. Journal of Engineering Materials & Technology, 1990, 112(1):175-179. [5] WANG M, PANG J C, ZHANG M X, et al. Thermo-mechanical fatigue behavior and life prediction of the Al-Si piston alloy[J]. Materials Science and Engineering:A, 2018, 715:62-72. [6] WAN H Y, ZHOU Z J, LI C P, et al. Effect of scanning strategy on grain structure and crystallographic texture of Inconel 718 processed by selective laser melting[J]. Journal of Materials Science & Technology, 2018, 34(10):1799-1804. [7] HUNEYCUTT R E, SAXENA A, YOON K B. Oxide-scale thickness measurement for predicting crack growth history in elevated temperature components[J]. International Journal of Pressure Vessels and Piping, 2018, 161:1-9. [8] HOLLAND S, WANG X, FANG X Y, et al. Grain boundary network evolution in Inconel 718 from selective laser melting to heat treatment[J]. Materials Science and Engineering:A, 2018, 725:406-418. [9] XIA M, GU D, YU G, et al. Porosity evolution and its thermodynamic mechanism of randomly packed powder-bed during selective laser melting of Inconel 718 alloy[J]. International Journal of Machine Tools and Manufacture, 2017, 116:96-106. [10] GORDON A P. Crack initiation modeling of a directionally-solidified nickel-base superalloy[D]. Atlanta:Georgia Institute of Technology, 2005. [11] KUPKOVITS R A. Thermomechanical fatigue behavior of the directionally-solidified nickel-base superalloy CM247LC[D]. Atlanta:Georgia Institute of Technology, 2009. [12] AMARO R L. Thermomechanical fatigue crack formation in a single crystal Ni-base superalloy[D]. Atlanta:Georgia Institute of Technology, 2010. [13] OROURKE M D. Effects of specimen geometry and coating on the thermo-mechanical fatigue of PWA 1484 superalloy[D]. Atlanta:Georgia Institute of Technology, 2013. [14] 张国栋, 刘绍伦, 何玉怀, 等. 定向合金DZ125热/机械疲劳寿命预测模型评估[J]. 航空动力学报, 2004, 19(1):17-22. ZHANG G D, LIU S L, HE Y H, et al. Life predication of thermomechanical fatigue in DS superalloy DZ125[J]. Journal of Aerospace Power, 2004, 19(1):17-22(in Chinese). [15] 张国栋, 刘绍伦, 何玉怀, 等. 相位角对定向合金DZ125热/机械疲劳行为与寿命影响的试验研究[J]. 航空动力学报, 2003, 18(3):383-387. ZHANG G D, LIU S L, HE Y H, et al. The effects of phase angle on thermomechanical fatigue behavior and life in DS superalloy DZ125[J]. Journal of Aerospace Power, 2003, 18(3):383-387(in Chinese). [16] 张国栋, 刘绍伦, 何玉怀, 等. 保持时间对定向合金DZ125热/机械疲劳断裂行为的影响[J]. 材料工程, 2006(6):49-53. ZHANG G D, LIU S L, HE Y H, et al. The effect of hold time on life and behavior of thermal-mechanical fatigue in DS superalloy DZ125[J]. Journal of Materials Engineering, 2006(6):49-53(in Chinese). [17] HU X A, YANG X G, SHI D Q, et al. Out of phase thermal mechanical fatigue investigation of a directionally solidified superalloy DZ125[J]. Chinese Journal of Aeronautics, 2016, 29(1):257-267. [18] NEU R W, SEHITOGLU H. Thermomechanical fatigue, oxidation, and creep:Part i. Damage mechanisms[J]. Metallurgical Transactions A, 1989, 20(9):1755-1767. [19] MCDOWELL D L, ANTOLOVICH S D, OEHMKE R L T. Mechanistic considerations for TMF life prediction of nickel-base superalloys[J]. Nuclear Engineering & Design, 1992, 133(3):383-399. [20] NEU R W, SEHITOGLU H. Thermomechanical fatigue, oxidation, and creep:Part Ⅱ. Life prediction[J]. Metallurgical Transactions A, 1989, 20(9):1769-1783. [21] ZHUANG W Z, SWANSSON N S. Thermo-mechanical fatigue life prediction:A critical review[J]. A Guide to Lead-free Solders, 1998, 30(2):384-399. [22] CHABOCHE J L. Constitutive equations for cyclic plasticity and cyclic viscoplasticity[J]. International Journal of Plasticity, 1989, 5(3):247-302. [23] CHABOCHE J L. A review of some plasticity and viscoplasticity constitutive theories[J]. International Journal of Plasticity, 2008, 24(10):1642-1693. [24] ROTERS F, EISENLOHR P, HANTCHERLI L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling:Theory, experiments, applications[J]. Acta Materialia, 2010, 58(4):1152-1211. [25] SABNIS P A, FOREST S, ARAKERE N K, et al. Crystal plasticity analysis of cylindrical indentation on a Ni-base single crystal superalloy[J]. International Journal of Plasticity, 2013, 51:200-217. [26] CHABOCHE J L, GAUBERT A, KANOUT P, et al. Viscoplastic constitutive equations of combustion chamber materials including cyclic hardening and dynamic strain aging[J]. International Journal of Plasticity, 2013, 46:1-22. [27] PRAGER W. A new method of analyzing stresses and strains in work-hardening plastic solids[M]. Brown:Brown University, 1955. [28] PERZYNA P. The constitutive equations for rate sensitive plastic materials providence[M]. Brown:Brown University, 1962. [29] PERZYNA P. Fundamental problems in viseoplasticity[J]. Advances in Applied Mechanics, 1966, 9:243. [30] ARMSTRONG P J, FREDERICK C, BRITAIN G. A mathematical representation of the multiaxial Bauschinger effect[M]. 1966. [31] WALKER K P. Research and development program for non-linear structural modeling with advanced time-temperature dependent constitutive relationships[R]. Washington, F.C.:NASA; 1981. [32] BODNER S, PARTOM Y. Constitutive equations for elastic-viscoplastic strain-hardening materials[J]. Journal of Applied Mechanics, 1975, 42(2):385-389. [33] DESERI L, MARES R. A class of viscoelastoplastic constitutive models based on the maximum dissipation principle[J]. Mechanics of Materials, 2000, 32(7):389-403. [34] MANONUKUL A, DUNNE F P E, KNOWLES D, et al. Multiaxial creep and cyclic plasticity in nickel-base superalloy C263[J]. International Journal of Plasticity, 2005, 21(1):1-20. [35] MÜCKE R, BERNHARDI O E. On temperature rate terms for viscoplastic constitutive models with applications to high temperature materials[J]. Computer methods in Applied Mechanics and Engineering, 2006, 195(19):2411-2431. [36] BECKER M, HACKENBERG H P. A constitutive model for rate dependent and rate independent inelasticity. Application to IN718[J]. International Journal of Plasticity, 2011, 27(4):596-619. [37] SHENOY M M. Constitutive modeling and life prediction in Ni-base superalloys[D]. Atlanta:Georgia Institute of Technology, 2006. [38] SHENOY M M, MCDOWELL D L, NEU R W. Transversely isotropic viscoplasticity model for a directionally solidified Ni-base superalloy[J]. International Journal of Plasticity, 2006, 22(12):2301-26. [39] 《航空发动机设计用材料数据手册》编委会. 航空发动机设计用材料数据手册:第四册[M]. 北京:航空工业出版社, 2010. The Compile Commitee of Materials Mechanical Data Handbook for Aircraft Engine Design. Materials mechanical data handbook for aircraft engine design (4)[M]. Beijing:Aviation Industry Press, 2010(in Chinese). [40] KUPKOVITS R A, NEU R W. Thermomechanical fatigue of a directionally-solidified Ni-base superalloy:Smooth and cylindrically-notched specimens[J]. International Journal of Fatigue, 2010, 32(8):1330-1342. [41] KERSEY R K, STAROSELSKY A, DUDZINSKI D C, et al. Thermomechanical fatigue crack growth from laser drilled holes in single crystal nickel based superalloy[J]. International Journal of Fatigue, 2013, 55:183-193. [42] CHABOCHE J L. On the plastic and viscoplastic constitutive equations-part I:Rules developed with internal variable concept[J]. Journal of Pressure Vessel Technology-Transactions of the ASME, 1983, 105(2):153-158. [43] MALININ N N, KHADJINSKY G M. Theory of creep with anisotropic hardening[J]. International Journal of Mechanical Sciences, 1972, 14(4):235-246. [44] KACHANOV M. Elastic solids with many cracks and related problems[J]. Advances in Applied Mechanics, 1993, 30(1):259. [45] SHI D Q, DONG C L, YANG X G. Constitutive modeling and failure mechanisms of anisotropic tensile and creep behaviors of nickel-base directionally solidified superalloy[J]. Materials & Design, 2013, 45:663-673. [46] CHABOCHE J L, NOUAILHAS D. A unified constitutive model for cyclic viscoplasticity and its applications to various stainless steels[J]. Journal of Engineering Materials & Technology, 1989, 111(4):189-193. [47] CHABOCHE J L. Constitutive equations for cyclic palsticity and cyclic viscoplasticity[J]. International Journal of Plasticity, 1989, 5(3):247-302. [48] OHNO N, WANG J D. Kinematic hardening rules with critical state of dynamic recovery-part I:Formulation and basic features for ratchetting behavior[J]. International Journal of Plasticity, 1993, 9(3):375-390. [49] BENALLAL A, CHEIKH A B. Constitutive laws for engineering materials[M]. New York:ASME Press, 1987. [50] 王井科. 镍基高温合金及钛合金缺口疲劳问题研究[D]. 北京:北京航空航天大学, 2011. WANG J K. Notch fatigue problems for Ni-base superalloy and Titanium alloy[D]. Beijing:Beihang University, 2001(in Chinese). [51] MOORE Z J. Life modeling of notched CM247LC DS nickel-base superalloy[D]. Atlanta:Georgia Institute of Technology, 2008. [52] HU X A, YANG X G, WANG J K, et al. A simple method to analyse the notch sensitivity of specimens in fatigue tests[J]. Fatigue & Fracture of Engineering Materials & Structures, 2013, 36(10):1009-1016. |