[1] EDKINS K D, RENSBURG N J, LAUBSCHER R F. Evaluating the subsurface microstructure of machined Ti-6Al-4V[J]. Procedia CIRP, 2014, 13:270-275. [2] 陈燕, 杨树宝, 傅玉灿, 等. 钛合金TC4高速切削刀具磨损的有限元仿真[J]. 航空学报, 2013, 34(9):2230-2240. CHEN Y, YANG S B, FU Y C, et al. FEM estimation of tool wear in high speed cutting of Ti6Al4V alloy[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2230-2240(in Chinese). [3] SUN Y J, SUN J, LI J F, et al. An experimental investigation of the influence of cutting parameters on cutting temperature in milling Ti6Al4V by applying semi-artificial thermocouple[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(5-8):765-773. [4] PATIL S, JADHAV S, KEKADE S, et al. The influence of cutting heat on the surface integrity during machining of titanium alloy Ti6Al4V[J]. Procedia Manufacturing, 2016, 5:857-869. [5] 鞠华伟. 热管式立铣刀温度场及动态特性研究[D]. 济南:山东大学, 2012:13-23. JU H W. Research on the temperature field and dynamics characteristics of heat pipe end mill[D]. Jinan:Shandong University, 2012:13-23(in Chinese). [6] 阎海鹏. 高速铣削铝合金切削温度的研究[D]. 南京:南京理工大学, 2004:19-34. YAN H P. Research on the temperature of high-speed milling of aluminum-alloys[D]. Nanjing:Nanjing University of Science and Technology, 2004:19-34(in Chinese). [7] JIAO L, WANG X B, QIAN Y B, et al. Modelling and analysis for the temperature field of the machined surface in the face milling of aluminium alloy[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(9-12):1797-1808. [8] 毕运波, 方强, 董辉跃, 等. 航空铝合金高速铣削温度场的三维有限元模拟及试验研究[J]. 机械工程学报, 2010, 46(7):160-165. BI Y B, FANG Q, DONG H Y, et al. Research on 3D numerical simulation and experiment of cutting temperature for high speed milling of aerospace aluminum alloy[J]. Journal of Mechanical Engineering, 2010, 46(7):160-165(in Chinese). [9] LIN S, PENG F Y, WEN J, et al. An investigation of workpiece temperature variation in end milling consid-ering flank rubbing effect[J]. International Journal of Machine Tools & Manufacture, 2013, 73(7):71-86. [10] LIU J, CHEN G, JI C H, et al. An investigation of workpiece temperature variation of helical milling for carbon fiber reinforced plastics (CFRP)[J]. International Journal of Machine Tools and Manufacture, 2014, 86:89-103. [11] YAN R, ZENG H H, PENG F Y, et al. Analytical mod-eling and experimental validation of workpiece temperature variation in bull-nose end milling[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(1-4):155-168. [12] COZ G L, MARINESCU M, DEVILLEZ A, et al. Measuring temperature of rotating cutting tools:Application to MQL drilling and dry milling of aerospace alloys[J]. Applied Thermal Engineering, 2012, 36(1):434-441. [13] KARAGUZEL U, BAKKAL M, BUDAK E. Modeling and measurement of cutting temperatures in milling[J]. Procedia CIRP, 2016, 46:173-176. [14] LI L, CHANG H, WANG M, et al. Temperature measurement in high speed milling Ti6Al4V[J]. Key Engineering Materials, 2004, 259-260:804-808. [15] MA Y, FENG P F, ZHANG J F, et al. Prediction of sur-face residual stress after end milling based on cutting force and temperature[J]. Journal of Materials Processing Technology, 2016, 235:41-48. [16] SATO M, UEDA T, TANAKA H. An experimental technique for the measurement of temperature on CBN tool face in end milling[J]. International Journal of Machine Tools & Manufacture, 2007, 47(14):2071-2076. [17] 王震宇. 高速立铣切削刀具温度场建模与实时在线温度测量技术研究[D]. 哈尔滨:哈尔滨理工大学, 2015:15-22. WANG Z Y. Study on the temperature field modeling and the real-time online temperature measuring technique for the high speed end mill[D]. Harbin:Harbin University of Science and Technology, 2015:15-22(in Chinese). [18] ABUKHSHIM N A, MATIVENGA P T, SHEIKH M A. Heat generation and temperature prediction in metal cutting:A review and implications for high speed machining[J]. International Journal of Machine Tools and Manufacture, 2006, 46(7-8):782-800. [19] SHAW M C. Metal cutting principles[M]. Oxford:Clarendon Press, 1984:15-43. [20] ALTINTAS Y. 数控技术与制造自动化[M]. 罗学科, 译. 北京:化学工业出版社, 2002:26-35. ALTINTAS Y. Manufacturing automationmetal cutting mechanics, machine tool vibrations, and CNC design[M]. LUO X K, translated. Beijing:Chemical Industry Press, 2002:26-35(in Chinese). [21] 舒畅. 高速铣削钛合金的切削温度研究[D]. 南京:南京航空航天大学, 2005:39-50. SHU C. Research on cutting temperature in high speed milling of titanium alloys[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2005:39-50(in Chinese). [22] RICHARDSON D J, KEAVEY M A, DAILAMI F. Modelling of cutting induced workpiece temperatures for dry milling[J]. International Journal of Machine Tools & Manufacture, 2006, 46(10):1139-1145. [23] 杨升, 董琼, 彭芳瑜, 等. 超高强度钢立铣工件温度分析及对加工表面质量的影响[J]. 航空学报, 2015, 36(5):1722-1732. YANG S, DONG Q, PENG F Y, et al. Workpiece temperature analysis and its impact on machined surface quality of ultra-high strength steel in end milling[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1722-1732(in Chinese). [24] SUNDQVIST B. Thermal diffusivity and thermal con-ductivity of Chromel, Alumel, and Constantan in the range 100-450 K[J]. Journal of Applied Physics, 1992, 72(2):539-545. [25] SUI S C, FENG P F. The influences of tool wear on Ti6Al4V cutting temperature and burn defect[J]. Inter-national Journal of Advanced Manufacturing Technology, 2016, 85(9-12):1-8. [26] CÔTÉ J, KONRAD J M. Thermal conductivity of base-course materials[J]. Canadian Geotechnical Journal, 2005, 42(1):61-78. [27] 耿国盛. 钛合金高速铣削技术的基础研究[D]. 南京:南京航空航天大学, 2006:40-50. GENG G S. Fundamental research on high speed milling of titanium alloys[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006:40-50(in Chinese). |