[1] |
丁文锋, 奚欣欣, 占京华, 等. 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019, 40(6):022763. DING W F, XI X X, ZHAN J H, et al. Research status and future development of grinding technology of titanium materials for aero-engine[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(6):022763(in Chinese).
|
[2] |
马付良, 曾志翔, 高义民, 等. 仿生表面减阻的研究现状与进展[J]. 中国表面工程, 2016, 29(1):7-15. MA F L, ZENG Z X, GAO Y M, et al. Research status and progress of bionic surface drag reduction[J]. China Surface Engineering, 2016, 29(1):7-15(in Chinese).
|
[3] |
XIE J, XIE H F, LIU X R, et al. Dry micro-grooving on Si wafer using a coarse diamond grinding[J]. International Journal of Machine Tools and Manufacture, 2012, 61:1-8.
|
[4] |
ZHANG S J, ZHOU Y P, ZHANG H J, et al. Advances in ultra-precision machining of micro-structured functional surfaces and their typical applications[J]. International Journal of Machine Tools and Manufacture, 2019, 142:16-41.
|
[5] |
DENKENA B, KOEHLER J, WANG B. Manufacturing of functional riblet structure by profile grinding[J]. CIRP Journal of Manufacturing Science and Technology, 2010, 9(3):14-26.
|
[6] |
BRINKSMEIER E, SCHÖNEMANN L. Generation of discontinuous microstructures by diamond micro chiseling[J]. CIRP Annals-Manufacturing Technology, 2014, 63(1):49-52.
|
[7] |
高航, 李世宠, 付有志, 等. 金属增材制造格栅零件磨粒流抛光[J]. 航空学报, 2017, 38(10):421210. GAO H, LI S C, FU Y Z, et al. Abrasive flow machining of additive manufactured metal grilling parts[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):421210(in Chinese).
|
[8] |
高航, 吴鸣宇, 付有志, 等. 流体磨料光整加工理论与技术的发展[J]. 机械工程学报, 2015, 51(7):174-187. GAO H, WU M Y, FU Y Z, et al. Development of theory and technology in fluid abrasive fining technology[J]. Journal of Mechanical Engineering, 2015, 51(7):174-178(in Chinese).
|
[9] |
WANG W, YUN C. A path planning method for robotic belt surface grinding[J]. Chinese Journal of Aeronautics, 2011, 24(4):520-526.
|
[10] |
黄云, 肖贵坚, 邹莱. 整体叶盘抛光技术的研究现状及发展趋势[J]. 航空学报, 2016, 37(7):2045-2064. HUANG Y, XIAO G J, ZOU L. Current situation and development trend of polishing technology for blisk[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(7):2045-2064(in Chinese).
|
[11] |
ECKART U, FLORIAN H. Improving efficiency in robot assisted belt grinding of high performance materials[J]. Advanced Materials Research, 2014, 907:139-149.
|
[12] |
ECKART U, FLORIAN H, MARCEL M, et al. Applicability of industrial robots for machining and repair processes[J]. Procedia CIRP, 2013, 11:234-238.
|
[13] |
XU X H, ZHU D H, ZHANG H Y, et al. Application of novel force control strategies to enhance robotic abrasive belt grinding quality of aero-engine blades[J]. Chinese Journal of Aeronautics, 2019, 32(10):2368-2382.
|
[14] |
张雷, 周宛松, 卢磊, 等. 抛光力实时控制策略研究[J]. 东北大学学报(自然科学版), 2015, 36(6):853-857. ZHANG L, ZHOU W S, LU L, et al. Research on real-time control strategies of polishing force[J]. Journal of Northeastern University (Nature Science), 2015, 36(6):853-857(in Chinese).
|
[15] |
肖贵坚, 黄云, 尹浩. 面向型面精度一致性的整体叶盘砂带磨削新方法及实验研究[J]. 航空学报, 2016, 37(5):1666-1676. XIAO G J, HUANG Y, YIN H. Experimental research of new belt grinding method for consistency of blisk profile and surface precision[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(5):1666-1676(in Chinese).
|
[16] |
XIAO G J, HUANG Y. Equivalent self-adaptive belt grinding for the real-R edge of an aero-engine precision-forged blade[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9-12):1697-1706.
|
[17] |
蔺小军, 杨艳, 吴广, 等. 面向叶片型面的五轴联动柔性数控砂带抛光技术[J]. 航空学报, 2015, 36(6):2074-2082. LIN X J, YANG Y, WU G, et al. Flexible polishing technology of five-axis NC abrasive belt for blade surface[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(6):2074-2082(in Chinese).
|
[18] |
BECHERT D W, BRUSE M, HAGE W, et al. Experiments on drag reducing surfaces and their optimization with an adjustable geometry[J]. Journal of Fluid Mechanics, 1997, 338:59-87.
|
[19] |
XIAO G J, HE Y, HUANG Y, et al. Shark-skin-inspired micro-riblets forming mechanism of TC17 titanium alloy with belt grinding[J]. IEEE Access, 2019, 7(1):107636-107648.
|
[20] |
CLAUDIA C B, SCHULZ U. Shark skin inspired riblet structures as aerodynamically optimized high temperature coatings for blades of aeroengines[J]. Smart Materials & Structures, 2011, 20(9):094016.
|