[1] Hjelen J, Ørsund R, Nes E. On the origin of recrystallization textures in aluminium[J]. Acta Metallurgica et Materialia, 1991, 39(7): 1377-1404.
[2] Zhang J M, Nie H, Xue C J, et al. Properties and prediction of pre-corrosion strength of aluminum alloy welded joints[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2161-2168 (in Chinese). 张俊苗, 聂宏, 薛彩军, 等. 铝合金焊接接头预腐蚀强度特性及预测[J]. 航空学报, 2013, 34(9): 2161-2168.
[3] Wu X R. Handbook of mechanical properties of aircraft structural metals: static strength fatigue/durability[M]. Beijing: Aviation Industry Press, 1996: 25-42 (in Chinese). 吴学仁. 飞机结构金属材料力学性能手册:静强度疲劳/耐久性[M]. 北京: 航空工业出版社, 1996: 25-42.
[4] Broek D. Elementary engineering fracture mechanics [M]. Hague: Kluwer Academic Publishers, 1974: 71-97.
[5] Vlieger H. The residual strength characteristics of stiffened panels containing fatigue cracks[J]. Engineering Fracture Mechanics, 1973, 5(2): 447-477.
[6] Feddersen C. Evaluation and prediction of the residual strength of center cracked tension panels[J]. Damage Tolerance in Aircraft Structures, 1971, 486(71): 50-78.
[7] Krafft J, Sullivan A, Boyle R. Effect of dimensions on fast fracture instability of notched sheets[C]//Proceedings of the Crack Propagation Symposium, 1961: 8-26.
[8] Zerbst U, Schǒdel M, Webster S, et al. Fitness-for-service fracture assessment of structures containing cracks[M]. Amsterdam: Elsevier; 2007: 137-151.
[9] Schwalbe K H. Introduction of δ5 as an operational definition of the CTOD and its practical use[S]. West Conshohocken: American Society for Testing and Materials, 1995.
[10] Zerbst U, Heinimann M, Donne C D, et al. Feacture and damage mechanics modelling of thin-walled structures—an overview [J]. Engineering Fracture Mechanics, 2009, 76(1): 5-43.
[11] Kocak M. FITNET fitness-for-service procedure: an overview [J]. Welding in the World, 2007, 51(5-6):94-105.
[12] Zhang Y H, Lyu G Z, Li Z, et al. Investigation on corrosion fatigue crack growth and residual strength of aluminum alloy structure[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 332-335 (in Chinese). 张有宏, 吕国志, 李仲, 等. 铝合金结构腐蚀疲劳裂纹扩展与剩余强度研究[J]. 航空学报, 2007 , 28(2): 332-335.
[13] Schwalbe K H, Newman J C Jr, Shannon J L Jr. Fracture mechanics testing on specimens with low constraint—standardization activities within ISO and ASTM[J]. Engineering Fracture Mechanics, 2005, 72(4): 557-576.
[14] China Iron and Steel Association. GB/T 24522—2009 Metallic materials-Method of test for the determination of resistance to stable crack extension using specimens of low constraint[S]. Beijing: Standards Press of China, 2009 (in Chinese). 中国钢铁工业协会. GB/T 24522—2009 金属材料 低拘束试样测定稳定裂纹扩展阻力的试验方法[S]. 北京: 中国标准出版社, 2009.
[15] Seib E, Uz M V, Kocak M. Fracture analysis of thin walled laser beam and friction stir welded Al-alloys using FITNET procedure[C]//International Conference of Fitness-for-Service, 2006: 229-239.
[16] Jones R, Krishnapillai M, Cairns K, et al. Application of infrared thermography to study crack growth and fatigue life extension procedures[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(12): 871-884. |