[1] Wang G X. Warhead technology[M]. Beijing: China Astronautic Publishing House, 1993: 415 (in Chinese). 王国雄. 弹头技术[M]. 北京: 中国宇航出版社,1993: 415.
[2] Bian Y G, Zhong J K. Heat transfer in high temperature boundary layer[M]. Beijing: Science Press, 1986: 134-147 (in Chinese). 卞荫贵, 钟家康. 高温边界层传热[M]. 北京:科学出版社, 1986: 134-147.
[3] Fay J A, Riddell F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences, 1958, 25(2): 73-85.
[4] Lees L. Laminar heat transfer over blunt-nosed bodies at hypersonic flight speeds[J]. Journal of Jet Propulsion, 1956, 26(4): 259-269.
[5] Cohen N B. Boundary-layer similar solutions and correlation equations for laminar heat-transfer distribution in equilibrium air at velocities up to 41,100 feet per second, NASA TR R-118 [R]. Washington, D. C.: NASA, 1961.
[6] Tauber M E. A review of high-speed, convective, heat-transfer computation methods, NASA TP-2914 [R]. Washington, D. C.: NASA, 1989.
[7] Engel C D, Praharaj S C. MINIVER upgrade for AVID system, Vol. I: LANMIN user's manual, NASA CR-172212 [R]. Washington, D. C.: NASA,1983.
[8] DeJarnette F R. Calculation of inviscid surface streamlines and heat transfer on shuttle type configurations, NASA CR-111921 [R].Washington, D. C.: NASA, 1971.
[9] DeJarnette F R, Hamilton H H. Aerodynamic heating on 3-D bodies including the effects of entropy swallowing[J]. Journal of Spacecraft and Rockets, 1975, 12(1): 5-12.
[10] Hamilton II H H, Greene F A, Weilmuenster K J. Comparison of heating calculations with experimental data on a modified shuttle orbiter[J]. Journal of Spacecraft and Rockets, 1992, 29(2): 208-215.
[11] Riley C J, DeJarnette F R. An engineering aerodynamic heating method for hypersonic flow[J]. Journal of Spacecraft and Rockets, 1992, 29(3): 327-334.
[12] Hamilton II H H, Greene F A. Approximate method for calculating heating rates on three-dimensional vehicles[J]. Journal of Spacecraft and Rockets, 1994, 31(3): 345-354.
[13] DeJarnette F R, Hamilton H H, Weilmuenster K J. New method for computing convective heating in stagnation region of hypersonic vehicles, AIAA-2008-1261 [R]. Reston: AIAA, 2008.
[14] Hamilton H H, Weilmuenster K J, DeJarnette F R. Approximate method for computing laminar and turbulent convective heating on hypersonic vehicles using unstructured grids, AIAA-2009-4310 [R]. Reston: AIAA, 2009.
[15] Cheatwood F M, Gnoffo P A. User's manual for the Langley aerothermodynamic upwind relaxation algorithm(LAURA), NASA TM-4674 [R]. Washington, D. C.: NASA, 1996.
[16] Walters R W, Slack D C, Cinnella P, et al. A user's guide to GASP, & quot; NASA Langley research, NAG-1-766 and NAG-1-1045 [R]. Washington, D. C.: NASA, 1990.
[17] Wright M J, Candler G. V, Bose D. Data-parallel line relaxation method for the Navier-Stokes equations[J]. AIAA Journal, 1998, 36(9): 1603-1609.
[18] Gnoffo P A. Multi-dimensional, inviscid flux reconstruction for simulation of hypersonic heating on tetrahedral grids, AIAA-2009-0599 [R]. Reston: AIAA, 2009.
[19] Candler G V, Barnhardt M D, Drayna T W. Unstructured grid approaches for accurate aeroheating simulations, AIAA-2007-3959 [R]. Reston: AIAA, 2007.
[20] Roncioni P, Ranuzzi G, Marini M, et al. Experimental and numerical investigation of aerothermal characteristics of hypersonic intermediate experimental vehicle[J]. Journal of Spacecraft and Rockets, 2011, 48(2): 291-302.
[21] Najafiyazdi A. An engineering inviscid-reacting boundary layer method for calculation of hypersonic aerodynamic heating, AIAA-2005-510 [R]. Reston: AIAA, 2005.
[22] Frank L. Advanced hypersonic test facilities[R]. Reston: AIAA, 2002.
[23] Luo Y C, Lyu Z G, Kong R Z, et al. The simulation performance analysis of LENS shock tunnel in the USA[C]//The Fifteenth National Conference on Shock and Shock Tube, 2012: 242-245(in Chinese). 罗义成, 吕治国, 孔荣宗, 等. 美国LENS激波风洞模拟能力分析[C]//第十五届全国激波与激波管学术会议, 2012: 242-245.
[24] Jiang Z L, Yu H R. Progress of the research on hypersonic shock tunnels[J]. Advances in Mechanics, 2009, 39(6): 766-776 (in Chinese). 姜宗林, 俞鸿儒. 高超声速激波风洞研究进展[J]. 力学进展, 2009, 39(6): 766-776.
[25] Guo Y J, Liu Q, Tong F L, et al. Effect of surface coating on the thermal structure of rocket tail[J]. Acta Aerodynamica Sinica, 2007, 25(1): 23-28 (in Chinese). 国义军, 刘强, 童福林, 等. 表面涂漆对火箭尾翼热结构的影响[J]. 空气动力学学报, 2007, 25(1):23-28.
[26] Xu X, Peng Z Y, Shi Y L, et al. The correlative calculation methods of aerodynamic force and heating for hypersonic cone with bulge[J]. Acta Aerodynamica Sinica, 2009, 27(2): 260-264 (in Chinese). 徐翔, 彭治雨, 石义雷, 等. 高超声速锥体表面凸起物分离干扰区气动力/热关联计算方法[J]. 空气动力学学报, 2009, 27(2): 260-264.
[27] Peng Z Y, Chen T, Xiao Y, et al. Study on high accurate and speedy aeroheating engineering calculation method for complex hypersonic vehicle[C]//2st Modern Aerodynamics & Aerothermodynamics Conference, 2011 (in Chinese). 彭治雨, 陈挺, 肖雨, 等. 复杂外形高超声速飞行器气动热高精度快速工程计算方法研究[C]//第二届近代空气动力学和热力学和气动热力学会议, 2011.
[28] Liu X, Deng X G, Mao M L, et al. High-order accurate scheme WCNS_E_5 applied to body heat transfer distributions[J]. Chinese Journal of Computational Physics, 2005, 22(5): 393-398 (in Chinese). 刘昕, 邓小刚, 毛枚良, 等. 高精度格式WCNS_E_5计算物面热流[J]. 计算物理, 2005, 22(5): 393-398.
[29] Yan C, Yu J J, Li J Z. Scheme effect and grid dependency in CFD computation of heat transfer[J]. Acta Aerodynamica Sinica, 2006, 24(1): 125-130 (in Chinese). 阎超, 禹建军, 李君哲. 热流CFD计算中格式和网格效应若干问题研究[J]. 空气动力学学报, 2006, 24(1): 125-130.
[30] Pan S, Feng D H, Ding G H, et al. Grid dependency and convergence in numerical simulation of aero-heating[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 493-499 (in Chinese). 潘沙, 冯定华, 丁国昊, 等. 气动热数值模拟中的网格相关性及收敛[J]. 航空学报, 2010, 31(3): 493-499.
[31] Li Z W. Study on the dissipative effect of approximate riemann solver on hypersonic heatflux simulation[J]. Chinese journal of Theoretical and Applied Mechanics, 2008, 40(1): 19-25 (in Chinese). 黎作武. 近似黎曼解对高超声速气动热计算的影响研究[J]. 力学学报, 2008, 40(1): 19-25.
[32] Pan S. Hypersonic aerothermal numerical simulation method and massive parallel computation research[D]. Changsha: National University of Defense Technology, 2010 (in Chinese). 潘沙. 高超声速气动热数值模拟方法及大规模并行计算研究[D]. 长沙: 国防科学技术大学, 2010.
[33] Shi Q, Li H. The researches on the NND finite element Method and its applications in predicting the heat transfer rate around complicated configurations[J]. Acta Aerodynamica Sinica, 2009, 27(2): 210-213 (in Chinese). 石清, 李桦. 复杂外形飞行器热流的NND有限元数值计算方法[J]. 空气动力学学报, 2009, 27(2): 210-213.
[34] Tong F L, Tang Z G, Guo Y J, et al. Numerical research on local heat flux of cavities[J]. Acta Aerodynamica Sinica, 2012, 30(4): 519-523 (in Chinese). 童福林, 唐志共, 国义军, 等. 凹坑局部干扰热环境数值模拟研究[J]. 空气动力学学报, 2012, 30(4):519-523.
[35] Ma J K, Wu S P, Wang C. Heat flux numerical simulation of hypersonic cone body[J]. Journal of Science Technology and Engineering, 2010, 10(36): 9019-9023 (in Chinese). 马继魁, 吴颂平, 王超. 高超声速钝头体表面热流的数值模拟[J]. 科学技术与工程, 2010, 10(36): 9019-9023.
[36] Gong W J, Tang S, Li S Z. Study on aero-heating numerical simulation for hypersonic vehicle[J]. Journal of Flight Mechanics, 2011, 29(2): 78-81 (in Chinese). 巩伟杰, 唐硕, 李世珍. 高超声速飞行器气动加热三维数值分析方法研究[J]. 飞行力学, 2011, 29(2): 78-81.
[37] He X Z, Zhao H Y, Le J L. Aerodynamic force and heat of hypersonic laminar and turbulent flows[J]. Chinese Journal of Computational Physics, 2008, 25(5): 555-560 (in Chinese). 贺旭照, 赵慧勇, 乐嘉陵. 吸气式高超声速飞行器气动力气动热的数值模拟方法及应用[J]. 计算物理, 2008, 25(5): 555-560.
[38] Baker R L. Low temperature ablator nosetip shape change at angle of attack, AIAA-72-90[R]. Reston: AIAA, 1972.
[39] Huang Z C. Aerospace aerodynamics[M]. Beijing: China Astronautic Publishing House, 1994: 325-328 (in Chinese). 黄志澄. 航天空气动力学[M]. 北京: 中国宇航出版社, 1994: 325-328.
[40] Walker G K. Aero space sciences[J]. Readers Forum, 1960, 27(9): 715-716.
[41] Vaglio L R. Turbulent heat transfer on blunt nosed bodies in two-dimensional and general three-dimensional hypersonic flow[J]. Journal of Aerospace Sciences, 1960, 27(1): 27-38.
[42] Zoby E V. Comparisons of free-flight experimental and predicted heating rates for the space shuttle, AIAA-82-0002 [R]. Reston: AIAA , 1982.
[43] Zhang Z C. Hypersonic aerothermodynamic and thermal protection[M]. Beijing: National Defence Industry Press, 2003: 104-105 (in Chinese). 张志成. 高超声速气动热和热防护[M]. 北京: 国防工业出版社, 2003: 104-105.
[44] Adams J C, Martindale W R. Hypersonic lifting body windward surface flow-field analysis for high angles of incidence, AEDC-TR-73-2 [R]. 1973.
[45] Vanmol D O, Anderson J D. Heat transfer charateristics of hypersonic waveriders with an emphasis on the leading edge effects, AIAA-92-2920 [R]. Reston: AIAA, 1992.
[46] Cheng H K. The blunt-body problem in hypersonic flow at low Reynolds number, AF-1285-A-10 [R]. 1963.
[47] Boylam D E. Laminar heat transfer on sharp and blunt ten-degree cones in conical and parallet low-density flow, AEDC-TR-73-106 [R]. 1973.
[48] Moss J N, Bird G A. Direct simulation of transition flow for hypersonic reentry conditions, AIAA-84-0223[R]. Reston: AIAA, 1984.
[49] Stewart D A, Rakich J V. Catalytic surface effects on space shuttle thermal protection system during earth entry of flights STS-2 through STS-5, NASA CP-2283[R]. Washington, D. C.: NASA, 1983.
[50] Kitamura K, Shima E, Nakamura Y, et al. Evaluation of Euler fluxes for hypersonic heating computations[J]. AIAA Journal, 2010, 48(4): 763-776.
[51] Hollis B R, Collier A S. Turbulent aeroheating testing of Mars science laboratory entry vehicle in perfect-gas nitrogen, AIAA-2007-1208 [R]. Reston: AIAA, 2007.
[52] Hollis B R, Horvath T J, Berry S A. X-33 Rev-F turbulent aeroheating results from test 6817 in NASA Langley 20-inch Mach 6 air tunnel and comparisons with compution, NASA TM-2003-211962 [R]. Washington, D. C.: NASA, 2003.
[53] Edquist K T. Afterbody heating predictions for a Mars science laboratory entry vehicle, AIAA-2005-4817 [R]. Reston: AIAA, 2005.
[54] Mazaheri A, Wood W A. Heating augmentation for short hypersonic protuberances[J]. Journal of Spacecraft and Rockets, 2009, 46(2): 284-291.
[55] Hollis B R. Experimental investigation of project orion crew exploration vehicle aeroheating LaRC 20-inch Mach 6 air tunnel test 6931, NASA TM-2009-215718 [R]. Washington, D. C.: NASA, 2009.
[56] Everhart J L, Berger K T, Merski N R, et al. Aero-heating of shallow cavities in hypersonic freestream flow, NASA TM-2010-216846[R]. Washington, D.C.: NASA, 2010.
[57] Wood W A, Oliver A B. Assessment of CFD hypersonic turbulent heating rates for space shuttle orbiter, AIAA-2011-3327 [R]. Reston: AIAA, 2011.
[58] Palmer G, Polsky S. Heating analysis of the nosecap and leading edges of the X-34 vehicle[J]. Journal of Spacecraft and Rockets, 1999, 36(2): 199-204.
[59] Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separated turbulent flows, AIAA-78-257 [R]. Reston: AIAA, 1978.
[60] Cebeci T. Behavior of turbulent flow near a porous wall with pressure gradient[J]. AIAA Journal, 1970, 8(12): 2152-2156.
[61] Tang C Y, Trumble K A, Campbell C H, et al. Numerical simulations of the boundary layer transition flight experiment, AIAA-2010-453 [R]. Reston: AIAA, 2010.
[62] Amar A, Calvert N, Kirk B. Development and verification of the charring ablating thermal protection implicit system solver, AIAA-2011-144 [R]. Reston: AIAA, 2011.
[63] Ismail F, Roe P L. Affordable, entropy-consistent Euler flux functions 2: entropy production at shocks[J]. Journal of Computational Physics, 2009, 28(15): 5410-5436.
[64] Wood W A, Kleb W L, Tang C Y, et al. Comparison of CFD predictions with shuttle global flight thermal imagery and discrete surface measurements, AIAA-2010-454 [R]. Reston: AIAA, 2010.
[65] Zhang X H, Wu Y Z, Wang J F. Aero-heating numerical simulation of axisymmetric reenter vehicle body[J]. Chinese Journal of Applied Mechanics, 2012, 29(3): 284-290 (in Chinese). 张向洪, 伍贻兆, 王江峰. 轴对称再入舱模型气动热特性数值模拟研究[J]. 应用力学学报, 2012, 29(3): 284-290.
[66] Bird G A. Approach to translational equilibrium in a rigid sphere gas[J]. Physical Fluids, 1963, 6(1): 1518-1519.
[67] Bird G A. Molecular gas dynamics and the direct simulation of gas flows[M]. London: Oxford University Press, 1994: 218-256.
[68] Wen C Y, Chen Y S, Liang S M, et al. Numerical simulations of nonequilibrium flows over rounded models at reentry speeds, AIAA-2012-5906 [R]. Reston: AIAA, 2012.
[69] Pham-Van D G, Erwin D, Muntz E P. Nonequilibrium molecular motion in a hypersonic shock wave[J]. Science, 1989, 245(1): 624-626.
[70] Ivanov M S,Gimelshein S F.Computational hypersonic rarefied flows[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 469-505.
[71] Votta R, Ranuzzi G, Di Clemente M, et al. Evaluation of local effects of transitional Knudsen number on shock wave boundary layer interactions, AIAA-2007-4545[R]. Reston: AIAA, 2007.
[72] Moss J N, Bird G A. Direct simulation Monte Carlo simulations of hypersonic flows with shock interactions[J]. AIAA Journal, 2005, 43(12):2565-2573.
[73] Hash D B, Hassan H A. A hybrid DSMC/Navier-Stokes solver, AIAA-95-0410 [R]. Reston: AIAA, 1995.
[74] Aktas O, Aluru N R. A combined continuum/DSMC technique for multiscale analysis of microuidic filters[J]. Journal of Computational Physics, 2002, 178(2): 342-372.
[75] Deschenes T R, Boyd I D, Schwartzentruber T E. Incorporating vibrational excitation in a hybrid particle-continuum method, AIAA-2008-4106[R]. Reston: AIAA, 2008.
[76] Schwartzentruber T E, Scalabrin L C, Boyd I D. Hybrid particle-continuum simulations of non-equilibrium hypersonic blunt body flow fields, AIAA-2006-3602 [R]. Reston: AIAA, 2006.
[77] Caflisch R, Chen H, Luo E D, et al. A hybrid method that interpolates between DSMC and CFD, AIAA-2006-987 [R]. Reston: AIAA, 2006.
[78] Schwartzentruber T E, Scalabrin L C, Modular I D. Implementation of a hybrid DSMC-NS algorithm for hypersonic non-equilibrium flows, AIAA-2007-613 [R]. Reston: AIAA, 2007.
[79] Schwartzentruber T E, Scalabrin L C, Boyd I D. Hybrid particle-continuum simulations of low Knudsen number hypersonic flows, AIAA-2007-3892 [R]. Reston: AIAA, 2007.
[80] Boyd I D, Trumble K, Michael J W. Nonequilibrium particle and continuum analyses of stardust entry for near continuum conditions, AIAA-2007-4543 [R]. Reston: AIAA, 2007.
[81] Burt J M, Boyd I D. A multiscale particle approach for continuum/rarefied flow simulation, AIAA-2008-1184 [R]. Reston: AIAA, 2008.
[82] Ozawa T, Wang A, Levin D A, et al. Development of a coupled DSMC-particle photon Monte Carlo method for simulating atomic radiation in hypersonic reentry flows, AIAA-2008-3916 [R]. Reston: AIAA, 2008.
[83] Schwartzentruber T E, Boyd I D. Investigation of continuum breakdown in hypersonic flows using a hybrid DSMC-NS algorithm, AIAA-2008-4108[R]. Reston: AIAA, 2008.
[84] Liu C P. Measurement of aero-heating and thermal protection test[M]. Beijing: National Defence Industry Press, 2013: 115-116 (in Chinese). 刘初平. 气动热与热防护实验热流测量[M]. 北京: 国防工业出版社, 2013: 115-116.
[85] Qin F, He C, Zeng L, et al. Experimental research of heat-transfer measurements on stagnation points[J]. Journal of Southwest Jiaotong University, 2013, 48(6): 1072-1077(in Chinese). 秦峰, 何川, 曾磊,等. 驻点热流测量实验技术研究[J]. 西南交通大学学报, 2013, 48(6): 1072-1077.
[86] Liebert C H. An investigation of the compatibility of radiation and convection heat flux measurements, AIAA-96-2272 [R]. Reston: AIAA, 1996.
[87] Murthy A V, Tsai B K, Sauders R D. Radiative calibration of heat-flux sensors at NIST: Facilities and techniques[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105 (2): 293-305.
[88] Filtz J R, Valin T, Hameury J, et al. New vacuum blackbody cavity for heat flux meter calibration[J].International Journal of Thermophysical, 2009, 30(1): 236-248.
[89] Zeng L, Shi Y A, Kong R Z, et al. Study on film resistance thermometer principle error analysis and data processing method[J]. Journal of Experiments in Fluid Mechanic, 2002, 25(1): 79-83 (in Chinese). 曾磊, 石友安, 孔荣宗, 等. 薄膜电阻温度计原理性误差分析及数据处理方法研究[J]. 实验流体力学, 2002, 25(1): 79-83.
[90] Zeng L, Gui Y W, He L X, et al. Study on data processing methods for coaxial thermal couple heat-flux sensor[J]. Journal of Engineering Thermophysics, 2009, 30(4): 661-664 (in Chinese). 曾磊, 桂业伟, 贺立新, 等. 镀层式同轴热电偶数据处理方法研究[J]. 工程热物理学报, 2009, 30(4): 661-664.
[91] Zhou J S, Kong R Z, Jiang T. Study on infrared thermal test technique in shock wind tunnel[J]. Journal of Jianghan University: Natural Science, 2010, 38(1): 36-39 (in Chinese). 周嘉穗, 孔荣宗, 江涛. 激波风洞红外测热实验技术研究[J]. 江汉大学学报: 自然科学版, 2010, 38(1): 36-39.
[92] Li M, Yang Y G, Zhu Z W. Experiment of the characteristic of aerodynamic heating on CAV using infrared thermograpy[J]. Infrared and Laser Engineering, 2013, 42(2): 285-289 (in Chinese). 李明, 杨彦广, 祝智伟. 利用红外热图开展通用航空飞行器气动热特性实验[J]. 红外与激光工程, 2013, 42(2): 285-289.
[93] Zhou J S, Zhang K L, Jiang T, et al. Preliminary experimental study on temperature sensitive luminescent thermography used in shock tunnel[J]. Journal of Experiments in Fluid Mechanic, 2013, 27(5): 70-82 (in Chinese). 周嘉穗, 张扣立, 江涛, 等. 激波风洞温敏热图技术初步实验研究[J]. 实验流体力学, 2013, 27(5): 70-82. |