[1] Anderson J D. Hypersonic and high temperature gas dynamics[M]. Reston: AIAA, 2000: 13-23.
[2] Bian Y G, Xu L G. Aerothermodynamics[M]. Hefei: Press of University of Science and Technology of China, 1997: 2-8 (in Chinese). 卞荫贵, 徐立功. 气动热力学[M]. 合肥: 中国科学技术大学出版社, 1997: 2-8.
[3] Jameson A, Schmidt W, Turkel E. Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes, AIAA-1981-1259[R]. Reston: AIAA, 1981.
[4] Mavriplis D J, Jameson A. Multigrid solution of the Navier-Stokes equations on triangular meshes[J]. AIAA Journal, 1990, 28(8): 1415-1425.
[5] Briley W R, McDonald H. Solution of the multidimensional compressible Navier-Stokes equations by a generalized implicit method[J]. Journal of Computational Physics, 1977, 24(4): 372-397.
[6] Jameson A, Turkel E. Implicit schemes and LU-decompositions[J]. Mathematics of Computation, 1981, 37(156): 385-397.
[7] Yoon S, Jameson A. Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-1026.
[8] Saad Y, Schultz M H. GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(3): 856-869.
[9] van Leer B. Flux-vector splitting for the Euler equations[J]. Lecture Notes on Physics, 1982, 170: 507-512.
[10] Roe P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43(2): 357-372.
[11] Liou M S, Steffen C J. A new flux splitting scheme[J]. Journal of Computational Physics, 1993, 107(1): 23-39.
[12] Liou M S. Ten years in the making: AUSM-family, AIAA-2001-2521[R]. Reston: AIAA, 2001.
[13] Jameson A. Analysis and design of numerical schemes for gas dynamics, 1: artificial diffusion, upwind biasing, limiters and their effect on accuracy and multigrid convergence[J]. International Journal of Computational Fluid Dynamics, 1995, 4(3): 171-218.
[14] Zhang H X. Non-oscillatory and non-free-parameter dissipation difference scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2): 143-165 (in Chinese). 张涵信. 无波动, 无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2): 143-165.
[15] Deardorff J W. A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers[J]. Journal of Fluid Mechanics, 1970, 41(2): 453-480.
[16] Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 539-578.
[17] Cebeci T, Smith A M O. Analysis of turbulent boundary layers[M].New York: Academic Press, Inc., 1974: 164-187.
[18] Baldwin B S, Lomax H. Thin layer approximation and algebraic model for separated turbulent flows, AIAA-1978-0257[R]. Reston: AIAA, 1978.
[19] Spalart P R, Allmaras S R. A one equation turbulence model for aerodinamic flows, AIAA-1992-0439[R]. Reston: AIAA, 1992.
[20] Baldwin B S, Barth T J. A one-equation turbulence transport model for high Reynolds number wall-bounded flows, NASA TM 102847[R]. Washington, D.C.: NASA, 1990.
[21] Jones W P, Launder B E. The prediction of laminarization with a two-equation model of turbulence[J]. International Journal of Heat and Mass Transfer, 1972, 15(2): 301-314.
[22] Liu J Y. An improverd SST turbulence model for hypersonic flows[J]. Acta Aeronautica et Astronautica Sinica,2012, 33(12): 2192-2201 (in Chinese). 刘景源. SST 湍流模型在高超声速绕流中的改进[J]. 航空学报, 2012, 33(12): 2192-2201.
[23] Wilcox D C. Reassessment of the scale-determining equation for advanced turbulence models[J]. AIAA Journal, 1988, 26(11): 1299-1310.
[24] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[25] Blottner F G. Nonequilibrium laminar boundary-layer flow of ionized air[J]. AIAA Journal, 1964, 2(11): 1921-1927.
[26] Zhang X H, Wu Y Z, Wang J F. Numerical simulation of thermo-chemical non-equilibrium hypersonic flows using HLLE+ scheme[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(2): 154-158 (in Chinese). 张向洪, 伍贻兆, 王江峰. HLLE+ 格式在高超声速热化学非平衡流场中的应用[J]. 南京航空航天大学学报, 2011, 43(2): 154-158.
[27] Liu C, Wang J F, Wu Y Z. Numerical simulation of multi-component reacting flows using AUFS scheme[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 40(2): 191-194 (in Chinese). 刘晨, 王江峰, 伍贻兆. AUFS格式在多组分反应流场模拟中的应用[J]. 南京航空航天大学学报, 2006, 40(2): 191-194.
[28] Liu J, Liu W, Zeng M, et al. Numerical simulation of 3D hypersonic thermochemical non-equilibrium flow[J]. Chinese Journal of Theoretical and Applied Mechanics, 2003, 35(6): 730-734 (in Chinese). 柳军, 刘伟, 曾明, 等. 高超声速三维热化学非平衡流场的数值模拟[J]. 力学学报, 2003, 35(6): 730-734.
[29] Herzberg G. Molecular spectra and molecular structure, Vol.1[M]. New York: Reitell Press, 1957: 13-27.
[30] Moore C E. Atomic energy levels as derived from the analyses of optical spectra[M]. Washington, D. C.: US Government Printing Office, 1971: 65-98.
[31] Hansen C F, Heims S P. A review of the thermodynamic, transport, and chemical reaction rate properties of high-temperature air[M]. [s.l.]: National Advisory Committee for Aeronautics, 1958: 105-112.
[32] Gupta R N, Yos J M, Thompson R A. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30 000 K, NASA-TM-101528[R]. Hampton, VA: Langley Research Center, 1989.
[33] Eklund D R, Stouffer S D, Northam G B. Study of a supersonic combustor employing swept ramp fuel injectors[J]. Journal of Propulsion and Power, 1997, 13(6): 697-704.
[34] Clutter J K, Mikolaitis D W, Shyy W. Effect of reaction mechanism in shock-induced combustion simulations, AIAA-1998-0274[R]. Reston: AIAA, 1998.
[35] Ingram D M, Jiang B, Causon D M. On methane combustion in a nozzle geometry using a reduced reaction kinetics model, AIAA-1996-0820[R]. Reston: AIAA, 1996.
[36] Liu C, Wang J F, Wu Y Z. Study on the abnormity of the axial-symmetric boundary in simulation of shock-induced combustion[J]. Journal of Aerospace Power, 2009, 24(6): 1219-1228 (in Chinese). 刘晨, 王江峰, 伍贻兆. 激波诱导燃烧模拟中轴对称边界条件数值异常研究[J]. 航空动力学报, 2009, 24(6): 1219-1228.
[37] Bird G A. Approach to translational equilibrium in a rigid sphere gas[J]. Physics of Fluids, 1963(6): 1518-1519.
[38] Bird G A. Application of the DSMC method to the full shuttle geometry, AIAA-1990-1692[R]. Reston: AIAA, 1990.
[39] Shen Q. Aerodynamics of rarefied gases[M]. Beijing: National Defense Industry Press, 2003: 17-23(in Chinese). 沈青. 稀薄气体动力学[M]. 北京:国防工业出版社,2003: 17-23.
[40] Fan J. Rarefied gas dynamics: advances and applications[J]. Advance in Mechanics, 2013, 43(2): 185-201 (in Chinese). 樊菁. 稀薄气体动力学:进展与应用[J]. 力学进展, 2013, 43(2): 185-201.
[41] Fan J, Liu H L, Jiang J Z, et al. Analysis and simulation of discharging residual rocket propellants in orbit[J]. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(2): 129-139 (in Chinese). 樊菁, 刘宏立, 蒋建政, 等. 火箭剩余推进剂排放过程的分析与模拟[J]. 力学学报, 2004, 36(2): 129-139.
[42] Fan J. A generalized soft sphere model for Monte Carlo simulations[J]. Physics of Fluids, 2002, 14: 4399-4405.
[43] Li Z H, Li Z H, Li H Y, et al. Research on CFD/DSMC hybrid numerical method in rarefied flows[J]. Acta Aerodynamica Sinica, 2013, 31(3): 282-287 (in Chinese). 李中华, 李志辉, 李海燕, 等. 过渡流区Navier-Stokes/DSMC耦合计算研究[J].空气动力学学报, 2013, 31(3):282-287.
[44] Wang X D. DSMC method on unstructured grids for hypersonic rarefied gas flow and its parallelization[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2006 (in Chinese). 王学德. 高超声速稀薄气流非结构网格 DSMC 及并行算法研究[D]. 南京: 南京航空航天大学, 2006.
[45] Wang X D, Wu Y Z, Xiao J. Unstructured DSMC method and application in three dimensional thermochemical nonequilibrium flow[J]. Journal of Astronautics, 2006, 27(12): 126-131 (in Chinese). 王学德, 伍贻兆, 夏健. 三维热化学非平衡流动非结构网格 DSMC 方法及其应用[J]. 宇航学报, 2006,27(12): 126-131.
[46] Pan Y, Wang J F, Wu Y Z. Numerical simulation of hypersonic viscous MHD flows based on unstructured meshes[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2007, 39(5): 555-559 (in Chinese). 潘勇, 王江峰, 伍贻兆. 非结构网格的高超声速粘性MHD流场数值模拟[J]. 南京航空航天大学学报, 2007, 39(5): 555-559.
[47] Zhang X H. Numerical simulation for hypersonic flowfield with electromagnetic interference[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013 (in Chinese). 张向洪. 高超声速流场电磁干扰数值模拟研究[D]. 南京: 南京航空航天大学, 2013.
[48] Brackbill J U, Barnes D C. The effect of nonzero on the numerical solution of the magnetohydrodynamic equations[J]. Journal of Computational Physics, 1980, 35: 426-430.
[49] Evans C R, Hawley J F. Simulation of magnetohydrodynamic flows: a constrained transport method[J]. The Astrophysical Journal, 1988, 332: 659-677.
[50] Powell K G, Roe P L, Myong R S. An upwind scheme for magnetohydrodynamics, AIAA-1995-1704[R]. Reston: AIAA, 1995.
[51] Dedner A, Kemm F, Kroner D, et al. Hyperbolic divergence cleaning for the MHD equations[J]. Journal of Computational Physics, 2002, 175: 645-673.
[52] Pan Y. Numerical methods for hypersonic flowfield with magnetic interference[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007 (in Chinese). 潘勇. 高超声速流场磁场干扰效应数值模拟方法研究[D]. 南京: 南京航空航天大学, 2007.
[53] Tian Z Y, Zhang K P, Ding G H, et al. Spurious magnetic field divergence cleaning in magnetohydrodynamic simulation[J]. Chinese Journal of Computational Physics, 2009, 26(1): 78-86 (in Chinese). 田正雨, 张康平, 丁国昊,等. MHD数值模拟中清除伪磁场散度方法[J]. 计算物理, 2009, 26(1): 78-86.
[54] de Jarnette F R, Hamilton H H. Inviscid surface streamlines and heat transfer on shuttle-type configurations[J]. Journal of Spacecraft and Rockets, 1973, 10(5): 314-321.
[55] Engel C D, Praharaj S C. MINIVER upgrade for the AVID system. Volume 1: LANMIN user’s manual, NASA CR-172212[R]. Washington, D.C.: NASA, 1983.
[56] Zoby E V, Simmonds A L. Engineering flowfield method with angle-of-attack applications[J]. Journal of Spacecraft and Rockets, 1985, 22(4): 398-404.
[57] Li J L, Tang Q G, Huo L, et al. The rapid engineering aero-heating calculation method for complex shaped hypersonic vehicles[J]. Journal of National University of Defense Technology, 2012, 34(6): 89-93 (in Chinese). 李建林, 唐乾刚, 霍霖, 等. 复杂外形高超声速飞行器气动热快速工程估算[J]. 国防科学技术大学学报, 2012, 34(6): 89-93.
[58] Murray A L, Lewis C H. Hypersonic three-dimensional viscous shock-layer flows over blunt bodies[J]. AIAA Journal, 1978, 16(12): 1279-1286.
[59] Helliwell W S, Dickinson R P, Lubard S C. Viscous flow over arbitrary geometries at high angle of attack[J]. AIAA Journal, 1981, 19(2): 191-197.
[60] Tannehill J C, Buelow P E, Ievalts J O, et al. Three-dimensional upwind parabolized Navier-Stokes code for real gasflows[J]. Journal of Spacecraft and Rockets, 1990, 27(2): 150-159.
[61] Gnoffo P. Upwind-biased, point-implicit relaxation strategies for viscous, hypersonic flows, AIAA-1989-1972[R]. Reston: AIAA, 1989.
[62] Huang F, Zhang L, Cheng X L, et al. Effects of continuum breakdown on aerothermodynamics[J]. Journal of Astronautics, 2012, 33(2): 153-159 (in Chinese). 黄飞, 张亮, 程晓丽, 等. 稀薄气体效应对尖前缘气动热特性的影响研究[J]. 宇航学报, 2012, 33(2): 153-159.
[63] Hamilton H H, Greene F A, DeJarnette F R. Approximate method for calculating heating rates on three-dimensional vehicles[J]. Journal of Apacecraft and Rockets, 1994, 31(3): 345-354.
[64] Pan S, Feng D H, Ding G H, et al. Grid dependency and convergence of hypersonic aerothermal simulation[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 493-499 (in Chinese). 潘沙, 冯定华, 丁国昊, 等. 气动热数值模拟中的网格相关性及收敛[J]. 航空学报, 2010, 31(3): 493-499.
[65] Yan C, Yu J J, Li J Z, Scheme effect and grid dependency in CFD compulations of heating transfer[J]. Acta Aerodynamica Sinica, 2006, 24(1): 125-130 (in Chinese). 阎超, 禹建军, 李君哲. 热流 CFD 计算中格式和网格效应若干问题研究[J]. 空气动力学学报, 2006, 24(1): 125-130.
[66] Li J Z, Yan C, Ke L, et al. Research on scheme effect of computational fluid dynamics in aerothermal[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(11): 1022-1025 (in Chinese). 李君哲, 阎超, 柯伦, 等. 气动热CFD计算的格式效应研究[J]. 北京航空航天大学学报, 2003, 29(11): 1022-1025.
[67] Lv L L, Zhang W W, Ye Z Y. Predicting heating distributions for hypersonic reentry bodies[J]. Chinese Journal of Applied Mechanics, 2006, 23(2): 259-262(in Chinese). 吕丽丽, 张伟伟, 叶正寅. 高超声速再入体表面热流计算[J]. 应用力学学报, 2006, 23(2): 259-262.
[68] Ji W D, Wang J F. Calculating method of aerodynamic heating for hypersonic aircrafts[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(3): 327-342.
[69] Cai G B, Xu D J. Hypersonic vehicle technology[M]. Beijing: Science Press, 2012: 34-45 (in Chinese). 蔡国飙, 徐大军. 高超声速飞行器技术[M]. 北京: 科学出版社, 2012: 34-45.
[70] Yang C, Xu Y, Xie C C. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11 (in Chinese). 杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11.
[71] Loehner R, Yang C, Cerbal J, er al. Fluid-structure-thermal interaction using a loose coupling algorithm and adaptive unstructured grids, AIAA-1998-2419[R]. Reston: AIAA, 1998.
[72] Thornton E, Dechaumphai P. Coupled flow, thermal and structural analysis of aerodynamically heated panels[J]. Journal of Aircraft, 1988, 25(11): 1052-1058.
[73] Wu Z G, Hui J P, Yang C. Hypersonic aerothermoelastic analysis of wings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 31(3): 270-273 (in Chinese). 吴志刚, 惠俊鹏, 杨超. 高超声速下翼面的热颤振工程分析[J]. 北京航空航天大学学报, 2005, 31(3): 270-273.
[74] Zhang W W, Xia W, Ye Z Y. A numerical method for hypersonic aerothermoelasticity[J]. Engineering Mechanics, 2006, 23(2): 41-46 (in Chinese). 张伟伟, 夏巍, 叶正寅. 一种高超音速热气动弹性数值研究方法[J]. 工程力学, 2006, 23(2): 41-46. |