[1] Moin P, Mahesh K. Direct numerical simulation: a tool in turbulence research[J]. Annual Review of Fluid Mechanics, 1998, 30(1): 539-578.[2] Pirozzoli S. Numerical methods for high-speed flows[J]. Annual Review of Fluid Mechanics, 2011,43:163-194.[3] Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994,115(1): 200-212.[4] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.[5] Suresh A, Huynh H T. Accurate monotonicity-preserving schemes with Runge-Kutta time stepping[J]. Journal of Computational Physics, 1997, 136(1): 83-99.[6] Deng X G, Zhang H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22-44.[7] Ma Y W, Fu D X. Fourth order accurate compact scheme with group velocity control (GVC)[J].Science in China Series A: Mathematics Physics & Astronomy, 2001, 44(9): 1197-1204.[8] Fu D X, Ma Y W, Li X L, et al. Direct numerical simulation of compressible turbulence[M]. Beijing: Science Press, 2011: 144-164 (in Chinese). 傅德薰, 马延文, 李新亮, 等. 可压缩湍流直接数值模拟 [M]. 北京: 科学出版社, 2011: 144-164.[9] Borges R, Carmona M, Costa B, et al. An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws[J]. Journal of Computational Physics, 2008, 227(6): 3191-3211.[10] Martin M P, Taylor E M, Wu M, et al. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence[J]. Journal of Computational Physics, 2006, 220(1): 270-289.[11] Wu M, Martin M P. Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp [J]. AIAA Journal, 2007, 45(4): 879-889.[12] Sun Z S, Ren Y X, Larricq C, et al. A class of finite difference schemes with low dispersion and controllable dissipation for DNS of compressible turbulence[J]. Journal of Computational Physics, 2011, 230(12): 4616-4635.[13] Ren Y X, Liu M, Zhang H X. A characteristic-wise hybrid compact-WENO scheme for solving hyperbolic conservation laws[J]. Journal of Computational Physics, 2003, 192(2): 365-386.[14] Li X L, Leng Y, He Z W. Optimized sixth-order monotonicity-preserving scheme by nonlinear spectral analysis [J]. International Journal for Numerical Methods in Fluids, 2013, 73(6): 560-577.[15] Li X L, Fu D X. Optimized MP scheme with adaptive dissipation and DNS of supersonic turbulent flows in DLR scramjet intake[C]//Eighth International Conference on Computational Fluid Dynamics. Chengdu: ICCFD, 2014.[16] Tu G H, Deng X G, Mao M L. Spectral property comparison of fifth-order nonlinear WCNS and WENO difference schemes[J]. Acta Aerodynamics Sinica, 2012, 30(6): 709-712 (in Chinese). 涂国华, 邓小刚, 毛枚良. 5阶非线性WCNS和WENO差分格式频谱特性比较[J]. 空气动力学报, 2012, 30(6):709-712.[17] Deng X G, Mao M L, Tu G H, et al. High-order and high accurate CFD methods and their applications for complex grid problems[J]. Communications in Computational Physics, 2011, 11(4): 1081-1102.[18] Deng X G, Mao M L, Tu G H, et al. Geometric conservation law and applications to high-order finite difference schemes with stationary grids[J]. Journal of Computational Physics, 2011, 230(4): 1100-1115.[19] He Z W, Li X L, Liang X. Nonlinear spectral-like schemes for hybrid schemes[J]. Science China: Physics, Mechanics & Astronomy, 2014, 57(4): 753-763.[20] Toro E F. Riemann solvers and numerical methods for fluid dynamics: a practical introduction[M]. Berlin: Springer-Verlag, 2009: 174-184.[21] Hu X Y,Adams N A,Shu C W. Positivity-preserving method for high-order conservative schemes solving compressible Euler equations[J]. Journal of Computational Physics, 2013, 242: 169-180.[22] Darian H M, Esfahanian V, Hejranfar K. A shock-detecting sensor for filtering of high-order compact finite difference schemes[J]. Journal of Computational Physics, 2011, 230(3): 494-514.[23] Shen Y Q, Zha G C. Generalized finite compact difference scheme for shock/complex flowfield interaction[J]. Journal of Computational Physics, 2011, 230(12): 4419-4436.[24] Kotov D V, Yee H C, Sjogreen B, et al. Performance of four high-order shock-capturing schemes for stiff source terms with discontinuities: preliminary results[R]. Center for Turbulence Research Annual Research Briefs, 2011: 393-403.[25] Morkovin M V. Effects on compressibility on turbulent flows[M]//Favre A J. Mecanique de la turbulence. Paris: CNRS, 1962: 367-380.[26] Martin M P. Direct numerical simulation of hypersonic turbulent boundary layers, Part 1. Initialization and comparison with experiments[J]. Journal of Fluid Mechanics, 2007,570: 347-364.[27] Duan L, Martin M P. Direct numerical simulation of hypersonic turbulent boundary layers, Part 4. Effect of high enthalpy[J]. Journal of Fluid Mechanics, 2011, 684: 25-59.[28] Duan L, Beekman I, Martin M P. Direct numerical simulation of hypersonic turbulent boundary layers, Part 2. Effect of wall temperature[J]. Journal of Fluid Mechanics, 2010, 655: 419-445.[29] Duan L, Beekman I, Martin M P. Direct numerical simulation of hypersonic turbulent boundary layers, Part 3. Effect of Mach number[J]. Journal of Fluid Mechanics, 2011, 672: 245-267.[30] Huang P G, Coleman G N, Bradshaw P. Compressible turbulent channel flows: DNS results and modeling[J]. Journal of Fluid Mechanics, 1995, 305: 185-218.[31] Liang X, Li X L. DNS of a spatially evolving hypersonic turbulent boundary layer at Mach 8[J]. Science China: Physics Mechanics and Astronomy, 2013, 56(7):1408-1418.[32] Li X L, Fu D X, Ma Y W. Direct numerical simulation of a spatially evolving supersonic turbulent boundary layer at Ma=6[J]. Chinese Physics Letters, 2006, 23(6): 1519-1522.[33] Chen X P, Li X L. Direct numerical simulation of chemical non-equilibrium turbulent flow[J]. Chinese Physical Letters, 2013, 30(6): 064702.[34] Zhong X, Ma Y. Boundary-layer receptivity of Mach 7.99 flow over a blunt cone to free-stream acoustic waves[J]. Journal of Fluid Mechanics, 2006, 556: 55-103.[35] Ma Y, Zhong X. Receptivity of a supersonic boundary layer over a flat plate. Part 1. Wave structures and interactions[J]. Journal of Fluid Mechanics, 2003,488:31-78.[36] Ma Y, Zhong X. Receptivity of a supersonic boundary layer over a flat plate, Part 2. Receptivity to freestream sound[J]. Journal of Fluid Mechanics, 2003,488:79-121.[37] Ma Y, Zhong X. Receptivity of a supersonic boundary layer over a flat plate, Part 3. Effects of different types of free-stream disturbances[J]. Journal of Fluid Mechanics, 2005,532: 63-109.[38] Zhong X, Wang X. Direct numerical simulation on the receptivity, instability and transition of hypersonic boundary layers[J]. Annual Review of Fluid Mechanics, 2012,44:527-561.[39] Li X L, Fu D X, Ma Y W. Direct numerical simulation of hypersonic boundary-layer transition over a blunt cone [J]. AIAA Journal, 2008,46(11): 2899-2913.[40] Li X L, Fu D X, Ma Y W. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack[J]. Physics of Fluids, 2010, 22(2): 025105.[41] Su C H, Zhou H. Transition prediction of a hypersonic boundary layer over a cone at small angle of attack-with the improvement of eN method[J], Science in China G, Mechanics and Astronomy, 2009, 52 (1): 115-123.[42] Sandham N D, Schulein E A, Wagner E A, et al. Transitional shock-wave/boundary-layer interactions in hypersonic flow[J]. Journal of Fluid Mechanics, 2014, 752:349-382.[43] Li X L. OpenCFD-SC user's manual[EB/OL]. (2011-4-12) [2014-9-20]. http://www.cfluid.com/bbs/viewthread.php?tid=89129&extra=page%3D1 (in Chinese). 李新亮. OpenCFD-SC用户手册[EB/OL]. (2011-4-12) [2014-9-20]. http://www.cfluid.com/bbs/viewthread.php?tid=89129&extra=page%3D1.[44] Li X L. OpenCFD-EC User's manual[EB/OL]. (2011-4-12) [2014-9-20]. http://www.cfluid.com/bbs/viewthread.php?tid=89129&extra=page%3D1 (in Chinese). 李新亮.OpenCFD-EC理论手册[EB/OL]. (2011-4-12)[2014-9-20]. http://www.cfluid.com/bbs/viewthread.php?tid=91376&extra=page%3D1 |