[1] Merchant M E. Mechanics of metal-cutting process. Journal of Applied Physics, 1945, 16(5): 267-275.
[2] Lee E H, Shaffer B W. The theory of plasticity applied to a problem of machining. Journal of Applied Mechanics, 1952, 19(2): 234-239.
[3] Oxley P L B. Mechanics of machining: an analytical approach to assessing machinability. Chichister: Ellis Horwood, 1989: 242.
[4] Khludkva A N. Plastic strain energy in ultrafast metal cutting. Russian Physics Journal, 1978, 21(11): 1501- 1502.
[5] Zhang X T, Jia G H. Debris analysis of on-orbit satellite collision based on hypervelocity impact simulation. Acta Aeronautica et Astronautica Sinica, 2011, 32(7): 1224-1230. (in Chinese) 张晓天, 贾光辉. 基于超高速碰撞仿真的卫星碰撞解体碎片分析. 航空学报, 2011, 32(7):1224-1230.
[6] Shaw M C. The size effect in metal cutting. Sadhana, 2003, 28: 875-896.
[7] Yang G T. Dynamic theory of plasticity. Beijing:Higher Education Press. 2000:7-10. (in Chinese) 杨桂通. 塑性动力学. 北京: 高等教育出版社, 2000: 7-10.
[8] El-Zahry R M. On the hydrodynamic characteristics of the secondary shear zone in metal machining with sticking-sliding friction using the boundary layer theory. Wear, 1987, 115(3): 349-359.
[9] Kwon K B, Cho D W, Lee S J, et al. A fluid dynamic analysis model of the ultra-precision cutting mechanism. ClRP Annals-Manfacturing Technology, 1999, 48(1): 43-46.
[10] Kazban R V. Effect of tool parameters on residual stress and temperature generation in high-speed machining of aluminum alloys. Indiana:University of Notre Dame, 2005: 37-39.
[11] Liu Z Q, Zhang K G. Sensitivity analysis of Johnson-Cook material constants on adiabatic shear. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 2140-2146. (in Chinese) 刘战强, 张克国. J-C本构参数对绝热剪切影响的敏感性分析.航空学报, 2011, 32(11): 2140-2146.
[12] He N, Lee T C. Assessment of deformation of a locallized chip in high speed machining. Journal of Materials Processing Technology, 2002, 129: 101-104.
[13] Bi X F, Liu Y X. Calculating strain rate and strain during orthogonal cutting in accordance to streamline theory. Journal of Northeastern University, 2009, 30(8): 1185-1188. (in Chinese) 毕雪峰, 刘永贤. 基于流线理论计算正交切削中应变率和应变的方法.东北大学学报, 2009, 30(8):1185-1188.
[14] Meyers M A. Dynamic behavior of materials. Zhang Q M, Liu Y, translated. Beijing: National Defence Industry Press, 2006: 230-240. (in Chinese) Meyers M A. 材料的动态力学行为. 张庆明, 刘彦, 译. 北京: 国防工业出版社, 2006: 230-240.
[15] Cheng J Y, Zhou G Q. A new theory of dislocation motion and its application to description of dynamic mechanical behavior of materials. Acta Metallurgica Sinica, 1995, 31(10): 431-437. (in Chinese) 程经毅, 周光泉. 一种新的位错运动理论及对材料动态力学行为的描述. 金属学报, 1995, 31(10): 431-437.
[16] Orowan E. Problems of plastic gliding. Proceedings of the Physical Society,1940, 52: 8.
[17] Parameswaran V R,Weertman J. Dislocation mobility in lead and Pb-In alloy single crystals. Metallurgical and Materials Transactions B, 1971, 2(4): 1233-1243.
[18] Su G S. Evolution and mechanisms of saw-tooth chip formation in high-speed machining. Jinan: School of Mechanical Engineering, Shandong University, 2011. (in Chinese) 苏国胜. 高速切削锯齿形切屑形成过程与形成机理研究. 济南:山东大学机械学院, 2011.
[19] Li G H, Wang M J, Duan C Z, et al. Finite element simulation of the process of orthogonal metal cutting based on the ANSYS/LS-DYNA. Transactions of the Chinese Society of Agricultural Machinery, 2007, 38(12):173-176. (in Chinese) 李国和, 王敏杰, 段春争, 等. 基于ANSYS/LS-DYNA的金属切削过程有限元模拟, 农业机械学报, 2007, 38(12): 173-176.
[20] Guo Y B, Yen D W. A FEM study on mechanisms of discontinuous chip formation in hard machining. Journal of Materials Processing Technology, 2004, 155-156: 1350-1356.
[21] Srinivasan K. Experimental determination of strain rate and flow stress in the primary shear zone while machining AISI 4340 and Ti-6AL-4V. Wichita: the Department of Industrial and Manufacturing Engineering, Wichita State University, 2010. |