[1] 刘小川, 郭军, 孙侠生, 等. 民机机身段和舱内设施坠撞试验及结构适坠性评估[J]. 航空学报, 2013, 34(9): 2130-2140. LIU X C, GUO J, SUN X S, et al. Drop test and structure crashworthiness evaluation of civil airplane fuselage section with cabin interiors[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2130-2140 (in Chinese). [2] 冯振宇, 张晓敏, 牟浩蕾, 等. 不同冲击条件对机身结构适坠性的影响[J]. 机械科学与技术, 2013, 32(3): 353-357. FENG Z Y, ZHANG X M, MOU H L, et al. Influences of different impact conditions on aircraft fuselage crashworthiness[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(3): 353-357 (in Chinese). [3] 刘宗兴, 刘军, 李维娜. 爆炸冲击载荷下典型机身结构动响应及破坏[J]. 航空学报, 2021, 42(2): 224252. LIU Z X, LIU J, LI W N. Dynamic response and failure of typical fuselage structure under blast impact load[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 224252 (in Chinese). [4] 胡宇群. 集中载荷冲击下梁的动态塑性响应分析[J]. 南京航空航天大学学报, 2009, 41(1): 25-29. HU Y Q. Dynamic plastic response of beams subjected to impact of concentrated mass[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2009, 41(1): 25-29 (in Chinese). [5] ZHAO Y P. Suggestion of a new dimensionless number for dynamic plastic response of beams and plates[J]. Archive of Applied Mechanics, 1998, 68(7-8): 524-538. [6] LI Q M, JONES N. On dimensionless numbers for dynamic plastic response of structural members[J]. Archive of Applied Mechanics, 2000, 70(4): 245-254. [7] HU Y Q. Application of response number for dynamic plastic response of plates subjected to impulsive loading[J]. International Journal of Pressure Vessels and Piping, 2000, 77(12): 711-714. [8] SHI X H, GAO Y G. Generalization of response number for dynamic plastic response of shells subjected to impulsive loading[J]. International Journal of Pressure Vessels and Piping, 2001, 78(6): 453-459. [9] FERGUSON G L. Replica model scaling for high strain-rate events[J]. International Journal of Impact Engineering, 1995, 16(4): 571-583. [10] SCHLEYER G K, HSU S S, WHITE M D. Scaling of pulse loaded mild steel plates with different edge restraint[J]. International Journal of Mechanical Sciences, 2004, 46(9): 1267-1287. [11] OSHIRO R E, ALVES M. Scaling impacted structures[J]. Archive of Applied Mechanics, 2004, 74(1-2): 130-145. [12] OSHIRO R E, ALVES M. Scaling of cylindrical shells under axial impact[J]. International Journal of Impact Engineering, 2007, 34(1): 89-103. [13] OSHIRO R E, ALVES M. Scaling of structures subject to impact loads when using a power law constitutive equation[J]. International Journal of Solids and Structures, 2009, 46(18-19): 3412-3421. [14] OSHIRO R E, ALVES M. Predicting the behaviour of structures under impact loads using geometrically distorted scaled models[J]. Journal of the Mechanics and Physics of Solids, 2012, 60(7): 1330-1349. [15] ALVES M, OSHIRO R E. Scaling impacted structures when the prototype and the model are made of different materials[J]. International Journal of Solids and Structures, 2006, 43(9): 2744-2760. [16] MAZZARIOL L M, OSHIRO R E, ALVES M. A method to represent impacted structures using scaled models made of different materials[J]. International Journal of Impact Engineering, 2016, 90: 81-94. [17] 张振华, 秦健, 王乘, 等. 固支加筋方板在均布冲击载荷作用下动态响应的相似畸变研究[J]. 哈尔滨工程大学学报, 2008, 29(3): 226-231. ZHANG Z H, QIN J, WANG C, et al. Method for scaling impact load data obtained from a small scale model to that of the full size clamped and stiffened plate[J]. Journal of Harbin Engineering University, 2008, 29(3): 226-231 (in Chinese). [18] 徐坤, 刘源, 冯吉奎, 等. 应变率效应对结构响应相似律的影响研究[J]. 兵工学报, 2016, 37(S2): 101-106. XU K, LIU Y, FENG J K, et al. Analysis of influence of strain rate effects on similarity law of structural response[J]. Acta Armamentarii, 2016, 37(Sup 2): 101-106 (in Chinese). [19] 姜正荣, 钟渝楷, 石开荣. 单层网壳冲击动态响应相似律与数值模拟验证[J]. 振动与冲击, 2016, 35(21): 143-149. JIANG Z R, ZHONG Y K, SHI K R. Comparability rule and numerical simulation verification for impact dynamic responses of single layer reticulated shells[J]. Journal of Vibration and Shock, 2016, 35(21): 143-149 (in Chinese). [20] 包杰, 刘昆, George WANG. 考虑应变率影响的圆管结构冲击试验缩尺修正方法研究[J]. 海洋工程, 2016, 34(5): 73-82. BAO J, LIU K, WANG G. Research on the modified scale method for impact tests of tubular structures considering the effect of strain rate[J]. The Ocean Engineering, 2016, 34(5): 73-82 (in Chinese). [21] 胡晨晞. 单层网壳结构非线性冲击响应研究[D]. 广州: 华南理工大学, 2019: 91-94. HU C X. Nonlinear response investigation of the single-layer reticulated domes under the impact load[D]. Guangzhou: South China University of Technology, 2019: 91-94 (in Chinese). [22] 秦健, 张振华. 原型和模型不同材料时加筋板冲击动态响应的相似预报方法[J]. 爆炸与冲击, 2010, 30(5): 511-516. QIN J, ZHANG Z H. A scaling method for predicting dynamic responses of stiffened plates made of materials different from experimental models[J]. Explosion and Shock Waves, 2010, 30(5): 511-516 (in Chinese). [23] 苏子星, 何继业. 基于Cowper-Symonds方程的相似理论修正方法[J]. 爆炸与冲击, 2018, 38(3): 654-658. SU Z X, HE J Y. Modified method for scaling law based on Cowper-Symonds equation[J]. Explosion and Shock Waves, 2018, 38(3): 654-658 (in Chinese). [24] SADEGHI H, DAVEY K, DARVIZEH R, et al. A scaled framework for strain rate sensitive structures subjected to high rate impact loading[J]. International Journal of Impact Engineering, 2019, 125: 229-245. [25] SADEGHI H, DAVEY K, DARVIZEH R, et al. Scaled models for failure under impact loading[J]. International Journal of Impact Engineering, 2019, 129: 36-56. [26] 王帅, 徐绯, 代震, 等. 结构冲击畸变问题的直接相似方法研究[J]. 力学学报, 2020, 52(3): 774-786. WANG S, XU F, DAI Z, et al. A direct scaling method for the distortion problems of structural impact[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 774-786 (in Chinese). [27] WANG S, XU F, DAI Z. Suggestion of the DLV dimensionless number system to represent the scaled behavior of structures under impact loads[J]. Archive of Applied Mechanics, 2020, 90(4): 707-719. [28] SNYMAN I M. Impulsive loading events and similarity scaling[J]. Engineering Structures, 2010, 32(3): 886-896. [29] OSHIRO R E, CALLE M A G, MAZZARIOL L M, et al. Experimental study of collision in scaled naval structures[J]. International Journal of Impact Engineering, 2017, 110: 149-161. [30] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[J]. Engineering Fracture Mechanics, 1983, 21: 541-548. |