首页 >

基于多源航天遥感影像的建筑物受损变化检测-航天遥感图像智能处理与分析专栏

李杰潘1,贺威1,唐明豪2,熊进3   

  1. 1. 武汉大学测绘遥感信息工程全国重点实验室
    2. 浙江省应急管理科学研究院
    3. 长江水利委员会汉江流域治理保护中心
  • 收稿日期:2025-09-28 修回日期:2025-12-04 出版日期:2025-12-08 发布日期:2025-12-08
  • 通讯作者: 贺威
  • 基金资助:
    国家自然科学基金;浙江省应急管理研发攻关科技项目

Pre-Disaster Footprint–Guided Building Damage Change Detection in Spaceborne Remote Sensing Imagery

  • Received:2025-09-28 Revised:2025-12-04 Online:2025-12-08 Published:2025-12-08
  • Contact: Wei HE

摘要: 自然灾害频发,对人类社会造成了巨大威胁与损失。作为承载人口与经济活动的核心载体,建筑物在灾害中极易受损,其受损情况直接关系到应急响应与灾后重建。因此,基于航天遥感影像快速、准确地获取建筑物受损信息已成为灾害应急中的关键环节。针对跨时相和跨模态航天遥感影像存在的几何失配、背景干扰和特征对齐困难,本文提出了一种基于灾前建筑物掩码引导的两阶段变化感知建筑物受损检测框架(Pre-Disaster Footprint–Guided Change-Aware Damage Detection Network (PDF-Net)。该框架首先利用孪生金字塔视觉 Transformer 提取灾前与灾后影像的多层次特征,并生成灾前建筑物掩码以引入引导信息;随后设计变化感知门控注意力模块对低层细节特征进行差分增强,突出局部变化信息,同时提出基于重叠窗口的分组跨时相注意力机制对高层语义特征进行显式对齐,强化建筑物区域的结构性变化表达,通过跨层次融合实现了精细化受损检测。在 xBD 数据集(灾前光学–灾后光学)和 BRIGHT 数据集(灾前光学–灾后合成孔径雷达)上的实验表明,该方法在同模态与跨模态任务中均取得显著提升,其中在 xBD 数据集上平均交并比分数较现有最佳方法提升 0.58%,在 BRIGHT 数据集上提升 1.97%,并在跨模态检测场景下表现出更高的鲁棒性与泛化能力。结果验证了所提出框架在复杂灾害航天遥感场景下的有效性与实用价值。

关键词: 遥感, 深度学习, 灾害, 变化检测, 建筑物受损

Abstract: Natural disasters occur frequently, posing serious threats and causing substantial losses to human society. As the primary carriers of population and economic activities, buildings are highly vulnerable to disasters, and their damage status directly affects emergency response and post-disaster reconstruction. Therefore, rapid and accurate acquisition of building damage information has become a critical requirement in disaster management. To address the challenges of geometric misalignment, background interference, and feature alignment difficulties in multi-temporal and cross-modal remote sensing imagery, we propose a Pre-Disaster Footprint–Guided Change-Aware Damage Detection Network (PDF-Net). Specifically, the framework first employs a twin pyramid vision transformer to extract multi-level features from pre- and post-disaster imagery and generates pre-disaster building masks to introduce guidance information. Subsequently, a change-aware gated attention module is designed to enhance differential representation of low-level detail features, highlighting local changes, while a grouped cross-temporal attention mechanism with overlapped windows is introduced to explicitly align high-level semantic features, thereby reinforcing the structural change representation of buildings. Finally, fine-grained damage detection is achieved through cross-level feature fusion. Experiments conducted on the xBD dataset (pre-disaster optical – post-disaster optical) and the BRIGHT dataset (pre-disaster optical – post-disaster SAR) demonstrate that the proposed method achieves significant improvements in both intra-modal and cross-modal tasks. Specifically, B-PriorNet surpasses the current state-of-the-art methods by 0.58% in mean Intersection-over-Union (mIoU) on the xBD dataset and by 1.97% on the BRIGHT dataset, showing stronger robustness and generalization ability in cross-modal detection scenarios. These results validate the effectiveness and practical value of the proposed framework in complex disaster environments.

Key words: Remote sensing, deep learning, disaster, change detection, building damage

中图分类号: