林杰1,2,3, 唐志共3(), 钱炜祺3, 王岳青2,3, 张鹏2,3, 徐炜遐1, 刘杰4,5
收稿日期:
2024-12-18
修回日期:
2025-01-13
接受日期:
2025-01-17
出版日期:
2025-02-06
发布日期:
2025-02-06
通讯作者:
唐志共
E-mail:tangzhigong@126.com
基金资助:
Jie LIN1,2,3, Zhigong TANG3(), Weiqi QIAN3, Yueqing WANG2,3, Peng ZHANG2,3, Weixia XU1, Jie LIU4,5
Received:
2024-12-18
Revised:
2025-01-13
Accepted:
2025-01-17
Online:
2025-02-06
Published:
2025-02-06
Contact:
Zhigong TANG
E-mail:tangzhigong@126.com
Supported by:
摘要:
生成式模型技术作为深度学习领域发展最为迅速的方向之一,在计算机视觉等领域取得巨大成功,也为空气动力学等科学领域研究提供了新的模式和方法。聚焦生成式模型在飞行器气动设计领域研究进展,系统总结近年来相关研究成果。首先,建立了包含“表示—生成—评估”3个环节的飞行器生成式气动设计框架;其次,针对气动布局表征、生成式气动布局生成和设计质量评估等环节技术发展现状和涉及的关键技术问题分别进行梳理和深入讨论;然后,简要介绍了气动数据构造方法和典型气动数据集,为开展生成式气动设计提供数据支撑;最后,结合气动设计需求和大模型技术在气动设计领域研究趋势,对发展融合型生成式模型架构、构建气动设计大模型和领域智能体、建立生成式气动设计质量综合评估体系、生成式气动设计模型领域知识融入等未来重点发展方向进行展望。
中图分类号:
林杰, 唐志共, 钱炜祺, 王岳青, 张鹏, 徐炜遐, 刘杰. 飞行器生成式模型气动设计研究进展与展望[J]. 航空学报, 2025, 46(10): 631679.
Jie LIN, Zhigong TANG, Weiqi QIAN, Yueqing WANG, Peng ZHANG, Weixia XU, Jie LIU. Research progress and prospects of aircraft aerodynamic design based on generative models[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(10): 631679.
表 1
基于生成式方法的气动布局设计部分典型模型对比
模型名称 | 研究对象 | 工况约束 | 目标约束 | 布局表示形式 | 生成式模型 |
---|---|---|---|---|---|
PcDGAN[ | 翼型 | 单一工况 | 单维约束 | 几何参数化 | GAN |
Viquerat等[ | 翼型 | 单一工况 | 单维约束 | Bézier参数化 | DRL |
Dussauge等[ | 翼型 | 单一工况 | 多维约束 | 几何参数化 | DRL |
CVAE-GAN[ | 超临界翼型 | 单一工况 | 单维约束 | 几何参数化 | CVAE-GAN |
CcDPM[ | 翼型,火箭 | 多个工况 | 多维约束 | 几何参数化 | DPM |
CWGAN-GP+MMoE[ | 导弹 | 单一工况 | 多维约束 | 几何参数化 | GAN |
Range-GAN[ | 飞机 | 单一工况 | 单维约束 | 隐士参数化 | GAN |
Shu等[ | 飞机 | 单一工况 | 单维约束 | 点云 | GAN |
Zhang等[ | 飞机 | 单一工况 | 单维约束 | SDF | VAE |
1 | 陈小前, 姚雯, 赵勇, 等. 飞行器多学科设计优化理论与应用研究[M]. 2版. 北京: 国防工业出版社, 2023: 3-4. |
CHEN X Q, YAO W, ZHAO Y. Multidisciplinary design optimization of flight vehicles theory and applications[M]. 2nd ed. Beijing: National Defense Industry Press, 2023: 3-4 (in Chinese). | |
2 | PETER J E V, DWIGHT R P. Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches[J]. Computers & Fluids, 2010, 39(3): 373-391. |
3 | LUO J Q, XIONG J T, LIU F. Aerodynamic design optimization by using a continuous adjoint method[J]. Science China Physics, Mechanics & Astronomy, 2014, 57(7): 1363-1375. |
4 | 黎明, 陈娇娇, 周海, 等. 基于伴随方法的无人机气动隐身优化设计[J]. 航空学报, 2024, 45(17): 530010. |
LI M, CHEN J J, ZHOU H, et al. Adjoint-based aero/stealth optimization design for UAV[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530010 (in Chinese). | |
5 | 赵轲, 邓俊, 黄江涛, 等. 飞翼布局高低速一体化气动优化设计[J]. 航空学报, 2024, 45(15): 129367. |
ZHAO K, DENG J, HUANG J T, et al. Aerodynamic optimization design of high and low speed integration for flying wing layout[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 129367 (in Chinese). | |
6 | 陈树生, 冯聪, 张兆康, 等. 基于全局/梯度优化方法的宽速域乘波-机翼布局气动设计[J]. 航空学报, 2024, 45(6): 629596. |
CHEN S S, FENG C, ZHANG Z K, et al. Aerodynamic design of wide-speed-range waverider-wing configuration based on global & gradient optimization method[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629596 (in Chinese). | |
7 | WANG K, YU S J, LIU T G, et al. Airfoil optimization based on isogeometric discontinuous Galerkin[C]∥Proceedings of the 2nd International Conference on Algorithms, Computing and Systems. New York: ACM, 2018: 227-231. |
8 | SCHRAMM M, STOEVESANDT B, PEINKE J. Optimization of airfoils using the adjoint approach and the influence of adjoint turbulent viscosity[J]. Computation, 2018, 6(1): 5. |
9 | 解静, 白鹏, 李永远. 基于遗传算法的升力体外形优化设计[J]. 气体物理, 2020, 5(4): 31-36. |
XIE J, BAI P, LI Y Y. Configuration design of lifting body based on genetic algorithm[J]. Physics of Gases, 2020, 5(4): 31-36 (in Chinese). | |
10 | HAGHIGHAT S, MARTINS J R R A, LIU H H T. Aeroservoelastic design optimization of a flexible wing[J]. Journal of Aircraft, 2012, 49(2): 432-443. |
11 | KENNEDY J, EBERHART R. Particle swarm optimization[C]∥Proceedings of ICNN’95-International Conference on Neural Networks. Piscataway: IEEE Press, 2002: 1942-1948. |
12 | COLOMBO A, DORIGO M, MANIEZZO V. Distributed optimization by ant colonies[C]∥Proceedings of the First European Conference on Artificial Life, 1991. |
13 | 常彦鑫, 高正红. 自适应差分进化算法在气动优化设计中的应用[J]. 航空学报, 2009, 30(9): 1590-1596. |
CHANG Y X, GAO Z H. Application of adaptive differential evolutionary algorithms to aerodynamic optimization design[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(9): 1590-1596 (in Chinese). | |
14 | HOSDER S, WATSON L T, GROSSMAN B, et al. Polynomial response surface approximations for the multidisciplinary design optimization of a high speed civil transport[J]. Optimization and Engineering, 2001, 2(4): 431-452. |
15 | FORRESTER A I J, SÓBESTER A, KEANE A J. Engineering design via surrogate modelling: A practical guide[M]. Chichester: John Wiley & Sons, 2008: 49-63. |
16 | JIN R, CHEN W, SIMPSON T W. Comparative studies of metamodelling techniques under multiple modelling criteria[J]. Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13. |
17 | 陈海昕, 邓凯文, 李润泽. 机器学习技术在气动优化中的应用[J]. 航空学报, 2019, 40(1): 522480. |
CHEN H X, DENG K W, LI R Z. Utilization of machine learning technology in aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522480 (in Chinese). | |
18 | KINGMA D P, WELLING M. Auto-encoding variational Bayes [DB/OL]. arXiv preprint: 11312.6114, 2013. |
19 | GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks [DB/OL]. arXiv preprint: 1406.2661, 2014. |
20 | DINH L, KRUEGER D, BENGIO Y. NICE: Non-linear independent components estimation[DB/OL]. arXiv preprint: 1410.8516, 2014. |
21 | SOHL-DICKSTEIN J, WEISS E A, MAHESWARANATHAN N, et al. Deep unsupervised learning using nonequilibrium thermodynamics[C]∥Proceedings of the 32nd International Conference on International Conference on Machine Learning-Volume 37. New York: ACM, 2015: 2256-2265. |
22 | REGENWETTER L, NOBARI A H, AHMED F. Deep generative models in engineering design: A review[J]. Journal of Mechanical Design, 2022, 144(7): 071704. |
23 | WANG H C, FU T F, DU Y Q, et al. Scientific discovery in the age of artificial intelligence[J]. Nature, 2023, 620(7972): 47-60. |
24 | GONG S S, LI M K, FENG J T, et al. DiffuSeq: Sequence to sequence text generation with diffusion models [DB/OL]. arXiv preprint: 2210.08933, 2022. |
25 | VAHDAT A, WILLIAMS F, GOJCIC Z, et al. Lion: Latent point diffusion models for 3d shape generation[J]. Advances in Neural Information Processing Systems, 2022, 35: 10021-10039. |
26 | MERCHANT A, BATZNER S, SCHOENHOLZ S S, et al. Scaling deep learning for materials discovery[J]. Nature, 2023, 624(7990): 80-85. |
27 | LIN X Y, XU C, XIONG Z P, et al. PanGu Drug Model: Learn a molecule like a human[J]. Science China Life Sciences, 2023, 66(4): 879-882. |
28 | ASPERTI A, MERIZZI F, PAPARELLA A, et al. Precipitation nowcasting with generative diffusion models [DB/OL]. arXiv preprint: 2308.06733, 2023. |
29 | 陈小前, 赵勇, 霍森林, 等. 多尺度结构拓扑优化设计方法综述[J]. 航空学报, 2023, 44(15): 528863. |
CHEN X Q, ZHAO Y, HUO S L, et al. A review of topology optimization design methods for multi-scale structures[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528863 (in Chinese). | |
30 | REGENWETTER L, SRIVASTAVA A, GUTFREUND D, et al. Beyond statistical similarity: Rethinking metrics for deep generative models in engineering design [DB/OL]. arXiv preprint: 2302.02913, 2023. |
31 | YANG Y Y, JIN M, WEN H M, et al. A survey on diffusion models for time series and spatio-temporal data [DB/OL]. arXiv preprint: 2404.18886, 2024. |
32 | BOND-TAYLOR S, LEACH A, LONG Y, et al. Deep generative modelling: A comparative review of VAEs, GANs, normalizing flows, energy-based and autoregressive models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(11): 7327-7347. |
33 | 唐志共, 朱林阳, 向星皓, 等. 智能空气动力学若干研究进展及展望[J]. 空气动力学学报, 2023, 41(7): 1-35. |
TANG Z G, ZHU L Y, XIANG X H, et al. Some research progress and prospect of intelligent aerodynamics[J]. Acta Aerodynamica Sinica, 2023, 41(7): 1-35 (in Chinese). | |
34 | ZHAO Y X, ZHANG P, SUN G P, et al. CcDPM: A continuous conditional diffusion probabilistic model for inverse design[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(15): 17033-17041. |
35 | YILMAZ E, GERMAN B. Conditional generative adversarial network framework for airfoil inverse design: AIAA-2020-3185[R]. Reston: AIAA, 2020. |
36 | CHEN W, FUGE M. BézierGAN: Automatic generation of smooth curves from interpretable low-dimensional parameters[J]. Machine Learning, 2018, 107(8-10): 1549-1575. |
37 | YANG S, LEE S G, YEE K. Inverse design optimization framework via a two-step deep learning approach: Application to a wind turbine airfoil[J]. Engineering with Computers, 2023, 39(3): 2239-2255. |
38 | CHEN Q, WANG J, POPE P, et al. Inverse design of two-dimensional airfoils using conditional generative models and surrogate log-likelihoods[J]. Journal of Mechanical Design, 2022, 144(2): 021712. |
39 | NOBARI A H, CHEN W W, AHMED F. RANGE-GAN: Design synthesis under constraints using conditional generative adversarial networks[J]. Journal of Mechanical Design, 2021, 143(12): 1-16. |
40 | SHU D L, CUNNINGHAM J D, STUMP G, et al. 3D design using generative adversarial networks and physics-based validation[J]. Journal of Mechanical Design, 2023, 142: 071701. |
41 | SOBIECZKY H. Parametric airfoils and wings[M]∥FUJII K, DULIKRAVICH G S. Recent development of aerodynamic design methodologies: Inverse design and optimization. Wiesbaden: Vieweg+Teubner Verlag, 1999: 71-87. |
42 | XIE H R, WANG J, ZHANG M. Parametric generative schemes with geometric constraints for encoding and synthesizing airfoils[J]. Engineering Applications of Artificial Intelligence, 2024, 128: 107505. |
43 | DU X S, HE P, MARTINS J R R A. A B-spline-based generative adversarial network model for fast interactive airfoil aerodynamic optimization[C]∥AIAA Scitech 2020 Forum. Reston: AIAA, 2020. |
44 | HICKS R M, HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft, 1978, 15(7): 407-412. |
45 | KULFAN B, BUSSOLETTI J. Fundamental parametric geometry representations for aircraft component shapes[C]∥11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2006. |
46 | QIU Y S, BAI J Q, LIU N, et al. Global aerodynamic design optimization based on data dimensionality reduction[J]. Chinese Journal of Aeronautics, 2018, 31(4): 643-659. |
47 | POOLE D J, ALLEN C B, RENDALL T. Efficient aero-structural wing optimization using compact aerofoil decomposition[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
48 | CINQUEGRANA D, IULIANO E. Investigation of adaptive design variables bounds in dimensionality reduction for aerodynamic shape optimization[J]. Computers & Fluids, 2018, 174: 89-109. |
49 | WU P, YUAN W Y, JI L L, et al. Missile aerodynamic shape optimization design using deep neural networks[J]. Aerospace Science and Technology, 2022, 126: 107640. |
50 | NICHOL A, JUN H, DHARIWAL P, et al. Point-E: A system for generating 3D point clouds from complex prompts [DB/OL]. arXiv preprint: 2212.08751, 2022. |
51 | SIDDIQUI Y, ALLIEGRO A, ARTEMOV A, et al. Meshgpt: Generating triangle meshes with decoder-only transformers[C]∥Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2024: 19615-19625. |
52 | WU Z, SONG S, KHOSLA A, et al. 3D shapenets: A deep representation for volumetric shapes[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2015: 1912-1920. |
53 | PARK J J, FLORENCE P, STRAUB J, et al. DeepSDF: Learning continuous signed distance functions for shape representation[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 165-174. |
54 | CHEN Z Q, ZHANG H. Learning implicit fields for generative shape modeling[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 5939-5948. |
55 | MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: Representing scenes as neural radiance fields for view synthesis[J]. Communications of the ACM, 2021, 65(1): 99-106. |
56 | TRIESS L T, BÜHLER A, PETER D, et al. Point cloud generation with continuous conditioning [DB/OL]. arXiv preprint: 2202.08526, 2022. |
57 | LIM H, KIM H. Multi-objective airfoil shape optimization using an adaptive hybrid evolutionary algorithm[J]. Aerospace Science and Technology, 2019, 87: 141-153. |
58 | HE Y W, SUN J J, SONG P, et al. Preference-driven Kriging-based multiobjective optimization method with a novel multipoint infill criterion and application to airfoil shape design[J]. Aerospace Science and Technology, 2020, 96: 105555. |
59 | LI Z Y, KOVACHKI N, AZIZZADENESHELI K, et al. Fourier neural operator for parametric partial differential equations [DB/OL]. arXiv preprint: 2010.08895, 2020. |
60 | CHARLES R Q, HAO S, MO K C, et al. PointNet: Deep learning on point sets for 3D classification and segmentation[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 77-85. |
61 | QI C R, YI L, SU H, et al. PointNet++: Deep hierarchical feature learning on point sets in a metric space[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 5105-5114. |
62 | GUO M H, CAI J X, LIU Z N, et al. PCT: Point cloud transformer[J]. Computational Visual Media, 2021, 7(2): 187-199. |
63 | ACHLIOPTAS P, DIAMANTI O, MITLIAGKAS I, et al. Learning representations and generative models for 3D point clouds[C]∥International Conference on Machine Learning (ICML), 2018. |
64 | DANESHMAND M, HELMI A, AVOTS E, et al. 3D scanning: A comprehensive survey [DB/OL]. arXiv preprint: 1801.08863, 2018. |
65 | 唐志共, 钱炜祺, 何磊, 等. 空气动力学领域大模型研究思考与展望[J]. 空气动力学学报, 2024, 42(12): 1-11. |
TANG Z G, QIAN W Q, HE L, et al. Thoughts and prospects on large model research in aerodynamics[J]. Acta Aerodynamica Sinica, 2024, 42(12): 1-11 (in Chinese). | |
66 | SHEN Y, HUANG W, WANG Z G, et al. A deep learning framework for aerodynamic pressure prediction on general three-dimensional configurations[J]. Physics of Fluids, 2023, 35(10): 107111. |
67 | BEN-HAMU H, MARON H, KEZURER I, et al. Multi-chart generative surface modeling[J]. ACM Transactions on Graphics, 2018, 37(6): 1-15. |
68 | TAN Q Y, GAO L, LAI Y K, et al. Variational autoencoders for deforming 3D mesh models[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 5841-5850. |
69 | ZHANG Z Y, WANG Y X, JIMACK P K, et al. MeshingNet: A new mesh generation method based on deep learning[C]∥International Conference on Computational Science, 2020: 186-198. |
70 | BROCK A, LIM T, RITCHIE J M, et al. Generative and discriminative voxel modeling with convolutional neural networks[DB/OL]. arXiv preprint: 1608.04236, 2016. |
71 | LI Y Y, PIRK S, SU H, et al. FPNN: Field probing neural networks for 3D data[C]∥Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 307-315. |
72 | ZHANG W T, YANG Z, JIANG H L, et al. 3D shape synthesis for conceptual design and optimization using variational autoencoders[C]∥International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ACM, 2019. |
73 | MITTAL P, CHENG Y C, SINGH M, et al. AutoSDF: Shape priors for 3D completion, reconstruction and generation[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 306-315. |
74 | CHEN X, DUAN Y, HOUTHOOFT R, et al. InfoGAN: Interpretable representation learning by information maximizing generative adversarial nets[C]∥Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 2180-2188. |
75 | CHEN W, AHMED F. MO-PaDGAN: Reparameterizing engineering designs for augmented multi-objective optimization[J]. Applied Soft Computing, 2021, 113: 107909. |
76 | CHEN W, AHMED F. PaDGAN: Learning to generate high-quality novel designs[J]. Journal of Mechanical Design, 2021, 143(3): 031703. |
77 | KANG Y E, LEE D, YEE K. Physically interpretable airfoil parameterization using variational autoencoder-based generative modeling[C]∥AIAA Scitech 2024 Forum. Reston: AIAA, 2024. |
78 | LI X Y, ZHANG Q, KANG D, et al. Advances in 3D generation: A survey [DB/OL]. arXiv preprint: 2401.17807, 2024. |
79 | SHEN T C, GAO J, YIN K X, et al. Deep marching tetrahedra: A hybrid representation for high-resolution 3D shape synthesis[J]. Advances in Neural Information Processing Systems, 2021, 34: 6087-6101. |
80 | ALQAHTANI H, KAVAKLI-THORNE M, KUMAR G. Applications of generative adversarial networks (GANs): An updated review[J]. Archives of Computational Methods in Engineering, 2021, 28(2): 525-552. |
81 | MIRZA M, OSINDERO S. Conditional generative adversarial nets[DB/OL]. arXiv preprint: 1411.1784, 2014. |
82 | ARJOVSKY M, CHINTALA S, BOTTOU L, et al. Wasserstein generative adversarial networks[C]∥Proceedings of the 34th International Conference on Machine Learning-Volume 70. New York: ACM, 2017: 214-223. |
83 | KINGMA D P, WELLING M. An introduction to variational autoencoders[J]. Foundations and Trends in Machine Learning, 2019, 12(4): 307-392. |
84 | SOHN K, YAN X C, LEE H, et al. Learning structured output representation using deep conditional generative models[C]∥Proceedings of the 29th International Conference on Neural Information Processing Systems - Volume 2. New York: ACM, 2015: 3483-3491. |
85 | KOJIMA H, IKEGAMI T. Organization of a Latent Space structure in VAE/GAN trained by navigation data[J]. Neural Networks, 2022, 152: 234-243. |
86 | BAO J M, CHEN D, WEN F, et al. CVAE-GAN: Fine-grained image generation through asymmetric training[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2764-2773. |
87 | DINH L, SOHL-DICKSTEIN J, BENGIO S. Density estimation using real NVP[DB/OL]. arXiv preprint: 1605.08803, 2016. |
88 | KINGMA D P, DHARIWAL P, KINGMA D P, et al. Glow: Generative flow with invertible 1×1 convolutions[C]∥Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 10236-10245. |
89 | YANG G D, HUANG X, HAO Z K, et al. PointFlow: 3D point cloud generation with continuous normalizing flows[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 4541-4550. |
90 | KIM H, LEE H, KANG W H, et al. SoftFlow: Probabilistic framework for normalizing flow on manifolds [DB/OL]. arXiv preprint: 2006.04604, 2020. |
91 | HO J, JAIN A, ABBEEL P, et al. Denoising diffusion probabilistic models[C]∥Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 6840-6851. |
92 | SINHA A, SONG J M, MENG C L, et al. D2C: Diffusion-denoising models for few-shot conditional generation [DB/OL]. arXiv preprint: 2106.06819, 2021. |
93 | VAHDAT A, KREIS K, KAUTZ J, et al. Score-based generative modeling in latent space[C]∥Proceedings of the 35th International Conference on Neural Information Processing Systems. New York: ACM, 2021: 11287-11302. |
94 | SONG J, MENG C, ERMON S. Denoising diffusion implicit models[C]∥International Conference on Learning Representations, 2020. |
95 | AHSAN M M, RAMAN S, LIU Y, et al. A comprehensive survey on diffusion models and their applications[DB/OL]. arXiv preprint: 2408.10207, 2024. |
96 | YANG L, ZHANG Z L, SONG Y, et al. Diffusion models: A comprehensive survey of methods and applications [DB/OL]. arXiv preprint: 2209.00796, 2022. |
97 | MUKHOPADHYAY S, GWILLIAM M, AGARWAL V, et al. Diffusion models beat GANs on image classification[J]. arXiv preprint: 2307.08702, 2023. |
98 | MAZÉ F, AHMED F, MAZÉ F, et al. Diffusion models beat GANs on topology optimization[C]∥Proceedings of the Thirty-Seventh AAAI Conference on Artificial Intelligence. New York: ACM, 2023: 9108-9116. |
99 | ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. A brief survey of deep reinforcement learning [DB/OL]. arXiv preprint:1708.05866, 2017. |
100 | HAO J Y, YANG T P, TANG H Y, et al. Exploration in deep reinforcement learning: From single-agent to multiagent domain[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(7): 8762-8782. |
101 | DHARIWAL P, NICHOL A, DHARIWAL P, et al. Diffusion models beat GANs on image synthesis[C]∥Proceedings of the 35th International Conference on Neural Information Processing Systems. New York: ACM, 2021: 8780-8794. |
102 | CHENG Y C, LEE H Y, TULYAKOV S, et al. SDFusion: Multimodal 3D shape completion, reconstruction, and generation[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 4456-4465. |
103 | DU X S, HE P, MARTINS J R R A. Rapid airfoil design optimization via neural networks-based parameterization and surrogate modeling[J]. Aerospace Science and Technology, 2021, 113: 106701. |
104 | LEI R W, BAI J Q, WANG H, et al. Deep learning based multistage method for inverse design of supercritical airfoil[J]. Aerospace Science and Technology, 2021, 119: 107101. |
105 | CHEN W, CHIU K, FUGE M. Aerodynamic design optimization and shape exploration using generative adversarial networks[C]∥AIAA Scitech 2019 Forum. Reston: AIAA, 2019. |
106 | JIN S Y, CHEN S S, CHE S Q, et al. Airfoil aerodynamic/stealth design based on conditional generative adversarial networks[J]. Physics of Fluids, 2024, 36(7): 077146. |
107 | YONEKURA K, SUZUKI K. Data-driven design exploration method using conditional variational autoencoder for airfoil design[J]. Structural and Multidisciplinary Optimization, 2021, 64(2): 613-624. |
108 | MROSEK M, OTHMER C, RADESPIEL R. Variational autoencoders for model order reduction in vehicle aerodynamics[C]∥AIAA Aviation 2021 Forum. Reston: AIAA, 2021. |
109 | YANG Y J, LI R Z, ZHANG Y F, et al. Flowfield prediction of airfoil off-design conditions based on a modified variational autoencoder[J]. AIAA Journal, 2022, 60(10): 5805-5820. |
110 | LI J C, ZHANG M Q, MARTINS J R, et al. Efficient aerodynamic shape optimization with deep-learning-based geometric filtering[J]. AIAA Journal, 2020, 58(10): 4243-4259. |
111 | YAMAKAWA S. YS flight simulator[EB/OL]. [2025-01-17]. . |
112 | YONEKURA K, WADA K, SUZUKI K. Generating various airfoils with required lift coefficients by combining NACA and Joukowski airfoils using conditional variational autoencoders[J]. Engineering Applications of Artificial Intelligence, 2022, 108: 104560. |
113 | WANG X, QIAN W Q, ZHAO T, et al. A generative design method of airfoil based on conditional variational autoencoder[J]. Engineering Applications of Artificial Intelligence, 2025, 139: 109461. |
114 | ZHANG Y F, YAN C Y, CHEN H X. An inverse design method for airfoils based on pressure gradient distribution[J]. Energies, 2020, 13(13): 3400. |
115 | SONG C, LUO X, LIU H Y, et al. Inverse design method of pressure distribution using variational autoencoder[C]∥2023 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2023) Proceedings. Singapore: Springer Nature Singapore, 2024: 1595-1610. |
116 | WANG J, LI R Z, HE C, et al. An inverse design method for supercritical airfoil based on conditional generative models[J]. Chinese Journal of Aeronautics, 2022, 35(3): 62-74. |
117 | LIU J, WU J Y, XIE H R, et al. AFBench: A large-scale benchmark for airfoil design [DB/OL]. arXiv preprint: 2406.18846, 2024. |
118 | 陈树生, 贾苜梁, 林家豪, 等. 生成式模型赋能飞行器技术应用研究进展与展望[J]. 航空学报, 2025, 46(11): 631194. |
CHEN S S, JIA M L, LIN J H, et al. Research progress and prospects of empowering intelligent aircraft technology applications with generative models[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(11): 631194 (in Chinese). | |
119 | 陈树生, 贾苜梁, 刘衍旭, 等. 变体飞行器变形方式及气动布局设计关键技术研究进展[J]. 航空学报, 2024, 45(6): 629595. |
CHEN S S, JIA M L, LIU Y X, et al. Deformation modes and key technologies of aerodynamic layout design for morphing aircraft: Review[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629595 (in Chinese). | |
120 | VIQUERAT J, RABAULT J, KUHNLE A, et al. Direct shape optimization through deep reinforcement learning[J]. Journal of Computational Physics, 2021, 428: 110080. |
121 | DUSSAUGE T P, SUNG W J, PINON FISCHER O J, et al. A reinforcement learning approach to airfoil shape optimization[J]. Scientific Reports, 2023, 13(1): 9753. |
122 | DING X, WANG Y W, XU Z H, et al. Continuous conditional generative adversarial networks: Novel empirical losses and label input mechanisms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(7): 8143-8158. |
123 | MOHRI M, ROSTAMIZADEH A, TALWALKAR A. Foundations of machine learning[M]. 2nd ed. Cambridge: MIT Press, 2018: 62-64. |
124 | DAVIS R A, LII K S, POLITIS D N. Remarks on some nonparametric estimates of a density function[M]∥Selected Works of Murray Rosenblatt. New York: Springer New York, 2011: 95-100. |
125 | PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065-1076. |
126 | CHAPELLE O, WESTON J, BOTTOU L, et al. Vicinal risk minimization[C]∥Annual Neural Information Processing Systems Conference, 2000: 416-422. |
127 | DONG Y, LI D W, ZHANG C, et al. Inverse design of two-dimensional graphene/h-BN hybrids by a regressional and conditional GAN[J]. Carbon, 2020, 169: 9-16. |
128 | NOBARI A H, CHEN W, AHMED F. PcDGAN: A continuous conditional diverse generative adversarial network for inverse design[C]∥Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. New York: ACM, 2021: 606-616. |
129 | PEZESHKI M, KABA O, BENGIO Y, et al. Gradient starvation: A learning proclivity in neural networks[J]. Advances in Neural Information Processing Systems, 2021, 34: 1256-1272. |
130 | PAPYAN V, HAN X Y, DONOHO D L. Prevalence of neural collapse during the terminal phase of deep learning training[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(40): 24652-24663. |
131 | LI C Y, FARKHOOR H, LIU R, et al. Measuring the intrinsic dimension of objective landscapes [DB/OL]. arXiv preprint: 1804.08838, 2018. |
132 | HASNAT M A, BOHNÉ J, MILGRAM J, et al. Von Mises-Fisher mixture model-based deep learning: Application to face verification[DB/OL]. arXiv preprint: 1706.04264, 2017. |
133 | DAVIDSON T R, FALORSI L, DE CAO N, et al. Hyperspherical variational auto-encoders[DB/OL]. arXiv preprint: 1804.00891, 2018. |
134 | CHEN L M, ZHANG G X, ZHOU H N, et al. Fast greedy MAP inference for determinantal point process to improve recommendation diversity[C]∥Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 5627-5638. |
135 | KARRAS T, LAINE S, AILA T M. A style-based generator architecture for generative adversarial networks[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 4396-4405. |
136 | KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 8107-8116. |
137 | BROCK A, DONAHUE J, SIMONYAN K. Large scale GAN training for high fidelity natural image synthesis [DB/OL]. arXiv preprint: 1809.11096, 2018. |
138 | DEVLIN J, CHANG M W, LEE K, et al. BERT: Pre-training of deep bidirectional transformers for language understanding [DB/OL]. arXiv preprint:1810.04805, 2018. |
139 | RAFFEL C, SHAZEER N, ROBERTS A, et al. Exploring the limits of transfer learning with a unified text-to-text transformer[J]. Journal of Machine Learning Research, 2020, 21(1): 5485-5551. |
140 | BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]∥Proceedings of the 34th International Conference on Neural Information Processing Systems. New York: ACM, 2020: 1877-1901. |
141 | WANG Y Q, DENG L, WAN Y B, et al. An intelligent method for predicting the pressure coefficient curve of airfoil-based conditional generative adversarial networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(7): 3538-3552. |
142 | HEUSEL M, RAMSAUER H, UNTERTHINER T, et al. GANs trained by a two time-scale update rule converge to a local Nash equilibrium[C]∥Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6629-6640. |
143 | BANERJEE S, LAVIE A. METEOR: An automatic metric for MT evaluation with improved correlation with human judgments[C]∥Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization, 2005: 65-72. |
144 | LIN C Y. ROUGE: A package for automatic evaluation of summaries[C]∥Annual Meeting of the Association for Computational Linguistics, 2004: 74-81. |
145 | PAPINENI K, ROUKOS S, WARD T, et al. BLEU: A method for automatic evaluation of machine translation [C]∥Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. New York: ACM, 2002: 311-318. |
146 | BIŃKOWSKI M, SUTHERLAND D J, ARBEL M, et al. Demystifying MMD GANs [DB/OL]. arXiv preprint: 1801.01401, 2018. |
147 | SALIMANS T, GOODFELLOW I, ZAREMBA W, et al. Improved techniques for training GANs[C]∥Proceedings of the 30th International Conference on Neural Information Processing Systems. New York: ACM, 2016: 2234-2242. |
148 | SMOLA A J, GRETTON A, BORGWARDT K. Maximum mean discrepancy[C]∥13th International Conference on Neural Information Processing, 2006: 3-6. |
149 | MROUEH Y, SERCU T. Fisher GAN[J]. Advances in Neural Information Processing Systems, 2017, 30: 2510-2520. |
150 | SHEN J, QU Y R, ZHANG W N, et al. Wasserstein distance guided representation learning for domain adaptation[C]∥Proceedings of the AAAI Conference on Artificial Intelligence, 2017: 3798-3804. |
151 | MROUEH Y, SERCU T, GOEL V. McGAN: Mean and covariance feature matching GAN[C]∥International Conference on Machine Learning, 2017: 2527-2535. |
152 | RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J]. Physica D: Nonlinear Phenomena, 1992, 60(1-4): 259-268. |
153 | JOYCE J M. Kullback-Leibler divergence[M]∥Encyclopedia of Machine Learning. Berlin, Heidelberg: Springer, 2011: 720-722. |
154 | YUAN Z L, WANG Y X, QIU Y S, et al. Aerodynamic coefficient prediction of airfoils with convolutional neural network[C]∥The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018). Singapore: Springer Singapore, 2019: 34-46. |
155 | YILMAZ E, GERMAN B. A convolutional neural network approach to training predictors for airfoil performance[C]∥18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2017. |
156 | LEE D H, LEE D, LEE J, et al. Prediction of multiple aerodynamic coefficients of missiles using CNN[C]∥AIAA Scitech 2022 Forum. Reston: AIAA, 2022. |
157 | RITZ S G, HARTFIELD R J, DAHLEN J A, et al. Rapid calculation of missile aerodynamic coefficients using artificial neural networks[C]∥2015 IEEE Aerospace Conference. Piscataway: IEEE Press, 2015: 1-19. |
158 | CHEN H, HE L, QIAN W Q, et al. Multiple aerodynamic coefficient prediction of airfoils using a convolutional neural network[J]. Symmetry, 2020, 12(4): 544. |
159 | BHATNAGAR S, AFSHAR Y, PAN S W, et al. Prediction of aerodynamic flow fields using convolutional neural networks[J]. Computational Mechanics, 2019, 64(2): 525-545. |
160 | HAN R K, WANG Y X, ZHANG Y, et al. A novel spatial-temporal prediction method for unsteady wake flows based on hybrid deep neural network[J]. Physics of Fluids, 2019, 31(12): 127101. |
161 | LEE S, YOU D. Data-driven prediction of unsteady flow over a circular cylinder using deep learning[J]. Journal of Fluid Mechanics, 2019, 879: 217-254. |
162 | MORTON J, WITHERDEN F D, JAMESON A, et al. Deep dynamical modeling and control of unsteady fluid flows[C]∥Proceedings of the 32nd International Conference on Neural Information Processing Systems, 2018. |
163 | EIVAZI H, VEISI H, NADERI M H, et al. Deep neural networks for nonlinear model order reduction of unsteady flows[J]. Physics of Fluids, 2020, 32(10): 105104. |
164 | SCARSELLI F, GORI M, TSOI A C, et al. The graph neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80. |
165 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[DB/OL]. arXiv preprint: 1609.02907, 2016. |
166 | PFAFF T, FORTUNATO M, SANCHEZ-GONZALEZ A, et al. Learning mesh-based simulation with graph networks[C]∥International Conference on Learning Representations, 2021. |
167 | YANG Z S, DONG Y D, DENG X G, et al. AMGNET: Multi-scale graph neural networks for flow field prediction[J]. Connection Science, 2022, 34(1): 2500-2519. |
168 | ZHOU J, CUI G Q, HU S D, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1: 57-81. |
169 | MOHI UD DIN A, QURESHI S. A review of challenges and solutions in the design and implementation of deep graph neural networks[J]. International Journal of Computers and Applications, 2023, 45(3): 221-230. |
170 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017, 30: 5998-6008. |
171 | SHEN L M, DENG L, LIU X L, et al. A generative adversarial network based on an efficient transformer for high-fidelity flow field reconstruction[J]. Physics of Fluids, 2024, 36(7): 075184. |
172 | SHEN L M, DENG L, WANG Y Q, et al. PCSAGAN: A physics-constrained generative network based on self-attention for high-fidelity flow field reconstruction[J]. Journal of Visualization, 2024, 27(4): 661-676. |
173 | SUN X X, LIU Y L, ZHANG W W, et al. Development and deployment of data-driven turbulence model for three-dimensional complex configurations[J]. Machine Learning: Science and Technology, 2024, 5(3): 035085. |
174 | CHEN T, CHEN H. Approximations of continuous functionals by neural networks with application to dynamic systems[J]. IEEE Transactions on Neural Networks, 1993, 4(6): 910-918. |
175 | LU L, JIN P Z, PANG G F, et al. Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators[J]. Nature Machine Intelligence, 2021, 3: 218-229. |
176 | XIONG W, HUANG X M, ZHANG Z Y, et al. Koopman neural operator as a mesh-free solver of non-linear partial differential equations[J]. Journal of Computational Physics, 2024, 513: 113194. |
177 | ZHAO T, QIAN W Q, LIN J, et al. Learning mappings from iced airfoils to aerodynamic coefficients using a deep operator network[J]. Journal of Aerospace Engineering, 2023, 36(5): 04023035. |
178 | 唐志共, 袁先旭, 钱炜祺, 等. 高速空气动力学三大手段数据融合研究进展[J]. 空气动力学学报, 2023, 41(8): 44-58. |
TANG Z G, YUAN X X, QIAN W Q, et al. Research progress on the fusion of data obtained by high-speed wind tunnels, CFD and model flight[J]. Acta Aerodynamica Sinica, 2023, 41(8): 44-58 (in Chinese). | |
179 | DUDLEY J, HUANG X, MACMILLIN E, et al. Multidisciplinary optimization of the high-speed civil transport[C]∥33rd Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1995. |
180 | HAFTKA R T. Combining global and local approximations[J]. AIAA Journal, 1991, 29(9): 1523-1525. |
181 | 韩忠华, 许晨舟, 乔建领, 等. 基于代理模型的高效全局气动优化设计方法研究进展[J]. 航空学报, 2020, 41(5): 623344. |
HAN Z H, XU C Z, QIAO J L, et al. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(5): 623344 (in Chinese). | |
182 | LEWIS R, NASH S. A multigrid approach to the optimization of systems governed by differential equations[C]∥8th Symposium on Multidisciplinary Analysis and Optimization. Reston: AIAA, 2000. |
183 | QIAN P Z G, JEFF WU C F. Bayesian hierarchical modeling for integrating low-accuracy and high-accuracy experiments[J]. Technometrics, 2008, 50(2): 192-204. |
184 | 杜涛, 陈闽慷, 李凰立, 等. 变精度模型(VCM)的自适应预处理方法研究[J]. 空气动力学学报, 2018, 36(2): 315-319. |
DU T, CHEN M K, LI H L, et al. Research on adaptive preconditioning method for variable complexity model[J]. Acta Aerodynamica Sinica, 2018, 36(2): 315-319 (in Chinese). | |
185 | JONES D R. A taxonomy of global optimization methods based on response surfaces[J]. Journal of Global Optimization, 2001, 21(4): 345-383. |
186 | HAN Z H, GÖRTZ S. Hierarchical Kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9): 1885-1896. |
187 | HAN Z H, XU C Z, ZHANG L, et al. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids[J]. Chinese Journal of Aeronautics, 2020, 33(1): 31-47. |
188 | ZHANG M, JIAO J, ZHANG J, et al. High-efficiency data fusion aerodynamic performance modeling method for high-altitude propellers[J]. Drones, 2024, 8(6): 229. |
189 | MENG X H, KARNIADAKIS G E. A composite neural network that learns from multi-fidelity data: Application to function approximation and inverse PDE problems[J]. Journal of Computational Physics, 2020, 401: 109020. |
190 | HE L, QIAN W Q, ZHAO T, et al. Multi-fidelity aerodynamic data fusion with a deep neural network modeling method[J]. Entropy, 2020, 22(9): 1022. |
191 | LU L, PESTOURIE R, JOHNSON S G, et al. Multifidelity deep neural operators for efficient learning of partial differential equations with application to fast inverse design of nanoscale heat transport[J]. Physical Review Research, 2022, 4(2): 023210. |
192 | YANG H, CHEN S S, GAO Z H, et al. Reynolds number effect correction of multi-fidelity aerodynamic distributions from wind tunnel and simulation data[J]. Physics of Fluids, 2023, 35(10): 103113. |
193 | FRESCA S, MANZONI A. POD-DL-ROM: Enhancing deep learning-based reduced order models for nonlinear parametrized PDEs by proper orthogonal decomposition[J]. Computer Methods in Applied Mechanics and Engineering, 2022, 388: 114181. |
194 | FRESCA S, MANZONI A, DEDÈ L, et al. POD-enhanced deep learning-based reduced order models for the real-time simulation of cardiac electrophysiology in the left atrium[J]. Frontiers in Physiology, 2021, 12: 679076. |
195 | WU X J, ZUO Z J, MA L, et al. Multi-fidelity neural network-based aerodynamic optimization framework for propeller design in electric aircraft[J]. Aerospace Science and Technology, 2024, 146: 108963. |
196 | UIUC Applied Aerodynamics Group. UIUC airfoil coordinates database [EB/OL]. [2025-01-17]. . |
197 | CHEN W, FUGE M. Synthesizing designs with interpart dependencies using hierarchical generative adversarial networks[J]. Journal of Mechanical Design, 2019, 141(11): 111403. |
198 | CHANG A X, FUNKHOUSER T, GUIBAS L, et al. ShapeNet: An information-rich 3D model repository [DB/OL]. arXiv preprint:1512.03012, 2015. |
199 | MO K C, ZHU S L, CHANG A X, et al. PartNet: A large-scale benchmark for fine-grained and hierarchical part-level 3D object understanding[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 909-918. |
200 | GUPTA A, SAVARESE S, GANGULI S, et al. Embodied intelligence via learning and evolution[J]. Nature Communications, 2021, 12(1): 5721. |
201 | HA D, SCHMIDHUBER J, HA D, et al. Recurrent world models facilitate policy evolution[C]∥Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 2455-2467. |
202 | WEI J, WANG X Z, SCHUURMANS D, et al. Chain-of-thought prompting elicits reasoning in large language models[C]∥Proceedings of the 36th International Conference on Neural Information Processing Systems. New York: ACM, 2022: 24824-24837. |
203 | KUMAR V, GLEYZER L, KAHANA A, et al. MyCrunchgpt: A LLM assisted framework for scientific machine learning[J]. Journal of Machine Learning for Modeling and Computing, 2023, 4(4): 41-72. |
[1] | 徐建宇, 周莉, 王占学, 是介, 史毫. 基于快速逐线计算模型的高超声速羽流红外辐射计算方法[J]. 航空学报, 2025, 46(8): 630778-630778. |
[2] | 孟令捷, 李红光, 李新军. 基于地貌类别信息指导的SAR图像仿真方法[J]. 航空学报, 2025, 46(7): 331003-331003. |
[3] | 赵志浩, 杨照华, 吴云, 余远金. 弱光环境下基于深度学习的单光子计数成像去噪方法[J]. 航空学报, 2025, 46(3): 630531-630531. |
[4] | 吴一全, 童康. 基于深度学习的无人机航拍图像小目标检测研究进展[J]. 航空学报, 2025, 46(3): 30848-030848. |
[5] | 楼锦华, 陈荣钱, 柳家齐, 鲍越, 吴昊, 尤延铖. 基于门控扩散模型的飞行器气动性能预测与反设计[J]. 航空学报, 2025, 46(10): 631183-631183. |
[6] | 陈唯实, 牛红闯, 王鑫, 万健, 卢贤锋, 张洁, 王青斌. 机场净空区飞鸟与无人机多源探测技术综述[J]. 航空学报, 2025, 46(10): 31251-031251. |
[7] | 王永海, 李昊歌, 李嘉鑫, 段毅, 田川, 郭灵犀, 吴旭生. 基于深度学习的飞行器外形快速生成[J]. 航空学报, 2025, 46(10): 631614-631614. |
[8] | 柳家齐, 陈荣钱, 楼锦华, 韩旭, 吴昊, 尤延铖. 基于深度学习的高速直升机旋翼翼型气动优化设计[J]. 航空学报, 2024, 45(9): 529828-529828. |
[9] | 罗旭东, 吴一全, 陈金林. 无人机航拍影像目标检测与语义分割的深度学习方法研究进展[J]. 航空学报, 2024, 45(6): 28822-028822. |
[10] | 刘海桥, 刘萌, 龚子超, 董晶. 基于深度学习的图像匹配方法综述[J]. 航空学报, 2024, 45(3): 28796-028796. |
[11] | 吴跃腾, 巴顿, 杜娟, 李云飞, 常军涛. 基于深度注意力网络的压气机流场重构方法[J]. 航空学报, 2024, 45(24): 630580-630580. |
[12] | 王梓, 王靖皓, 李杨, 李璋, 于起峰. 基于轻量级神经网络的非合作目标位姿单目测量[J]. 航空学报, 2024, 45(22): 330248-330248. |
[13] | 武天才, 王宏伦, 任斌, 严国乘, 吴星雨. 基于学习的高超声速飞行器分层协调容错方法[J]. 航空学报, 2024, 45(22): 330191-330191. |
[14] | 樊云翔, 艾化楠, 王明振, 曹楷, 刘学军, 吕宏强. 基于深度学习的水上飞机非定常水载荷重构[J]. 航空学报, 2024, 45(20): 129882-129882. |
[15] | 李俊燊, 孟祥彦, 石暖暖, 李伟, 祝宁华, 李明. 光学神经网络智能处理:技术演变与未来展望[J]. 航空学报, 2024, 45(20): 630439-630439. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学