1 |
KEDWARD L, ALLEN C B, RENDALL T. Regularisation of high fidelity aerodynamic shape optimisation problems using gradient limits[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
|
2 |
MASTERS D A, TAYLOR N J, RENDALL T C S, et al. Geometric comparison of aerofoil shape parameterization methods[J]. AIAA Journal, 2017, 55(5): 1575-1589.
|
3 |
SOBIECZKY H. Geometry generator for CFD and applied aerodynamics[M]∥New Design Concepts for High Speed Air Transport. Vienna: Springer Vienna, 1997: 137-157.
|
4 |
KULFAN B, BUSSOLETTI J. “Fundamental” Parameteric geometry representations for aircraft component shapes[C]∥11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2006.
|
5 |
JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3): 233-260.
|
6 |
PICKETT R, RUBINSTEIN M, NELSON R. Automated structural synthesis using a reduced number of design coordinates[C]∥14th Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 1973.
|
7 |
SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[C]∥Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1986: 151-160.
|
8 |
BUHMANN M D. Radial basis functions[M]. New York: Cambridge University Press, 2003.
|
9 |
MORRIS A M, ALLEN C B, RENDALL T C S. CFD-based optimization of aerofoils using radial basis functions for domain element parameterization and mesh deformation[J]. International Journal for Numerical Methods in Fluids, 2008, 58(8): 827-860.
|
10 |
SAMAREH J. Aerodynamic shape optimization based on free-form deformation[C]∥10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2004.
|
11 |
EYI S N, HANQUIST K M, BOYD I D. Shape optimization of reentry vehicles to minimize heat loading[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(3): 785-796.
|
12 |
吴义忠, 曹庆伟. 基于知识的飞行器外形设计系统研究[J]. 计算机工程与应用, 2006, 42(1): 202-204.
|
|
WU Y Z, CAO Q W. Research on aerocraft shape design system with knowledge based engineering[J]. Computer Engineering and Applications, 2006, 42(1): 202-204 (in Chinese).
|
13 |
李润泽, 张宇飞, 陈海昕. 针对超临界翼型气动修型策略的强化学习[J]. 航空学报, 2021, 42(4): 269-282.
|
|
LI R Z, ZHANG Y F, CHEN H X. Reinforcement learning method for supercritical airfoil aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 269-282 (in Chinese).
|
14 |
KAR A, TULSIANI S, CARREIRA J, et al. Category-specific object reconstruction from a single image[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 1966-1974.
|
15 |
FAN H Q, SU H, GUIBAS L. A point set generation network for 3D object reconstruction from a single image[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 2463-2471.
|
16 |
WU J J, WANG Y F, XUE T F, et al. MarrNet: 3D shape reconstruction via 2.5D sketches[EB/OL]. (2017-11-08) [2024-12-04]. .
|
17 |
GADELHA M, MAJI S, WANG R. 3D shape induction from 2D views of multiple objects[C]∥2017 International Conference on 3D Vision (3DV). Piscataway: IEEE Press, 2017: 402-411.
|
18 |
HAN X G, GAO C, YU Y Z. DeepSketch2Face[J]. ACM Transactions on Graphics, 2017, 36(4): 1-12.
|
19 |
WANG N Y, ZHANG Y D, LI Z W, et al. Pixel2Mesh: generating 3D mesh models from single RGB images[C]∥Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 55-71.
|
20 |
张伟伟, 寇家庆, 刘溢浪. 智能赋能流体力学展望[J]. 航空学报, 2021, 42(4): 524689.
|
|
ZHANG W W, KOU J Q, LIU Y L. Prospect of artificial intelligence empowered fluid mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524689 (in Chinese).
|
21 |
田洁华, 孙迪, 屈峰, 等. 基于CST-GAN的翼型参数化方法[J]. 航空学报, 2023, 44(18): 128280.
|
|
TIAN J H, SUN D, QU F, et al. Airfoil parameterization method based on CST-GAN[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 128280 (in Chinese).
|
22 |
WANG J, LI R Z, HE C, et al. An inverse design method for supercritical airfoil based on conditional generative models[J]. Chinese Journal of Aeronautics, 2022, 35(3): 62-74.
|
23 |
LI R Z, ZHANG Y F, CHEN H X. Physically interpretable feature learning of supercritical airfoils based on variational autoencoders[J]. AIAA Journal, 2022, 60(11): 6168-6182.
|
24 |
KOU J Q, BOTERO-BOLÍVAR L, BALLANO R, et al. Aeroacoustic airfoil shape optimization enhanced by autoencoders[J]. Expert Systems with Applications, 2023, 217: 119513.
|
25 |
DENG Z W, WANG J, LIU H S, et al. Prediction of transonic flow over supercritical airfoils using geometric-encoding and deep-learning strategies[J]. Physics of Fluids, 2023, 35(7): 075146.
|
26 |
赵钟, 何磊, 何先耀. 风雷(PHengLEI)通用CFD软件设计[J]. 计算机工程与科学, 2020, 42(2): 210-219.
|
|
ZHAO Z, HE L, HE X Y. Design of general CFD software PHengLEI[J]. Computer Engineering & Science, 2020, 42(2): 210-219 (in Chinese).
|
27 |
唐志共, 钱炜祺, 何磊, 等. 空气动力学领域大模型研究思考与展望[J]. 空气动力学学报, 2024, 42(12): 1-11.
|
|
TANG Z G, QIAN W Q, HE L, et al. Thoughts and prospects on large model research in aerodynamics[J]. Acta Aerodynamica Sinica, 2024, 42(12): 1-11.
|
28 |
林杰, 唐志共, 钱炜祺, 等. 飞行器生成式气动设计研究进展与展望[J]. 航空学报, 2025, 46(10): 631679.
|
|
LIN J, TANG Z G, QIAN W Q, et al. Research progress and prospect of aircraft generative aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(10): 631679 (in Chinese).
|
29 |
WANG Z R. 3D representation methods: a survey[DB/OL]. arXiv preprint: 2410. 06475, 2024.
|
30 |
ACHLIOPTAS P, DIAMANTI O, MITLIAGKAS I, et al. Learning representations and generative models for 3D point clouds[EB/OL]. (2018-06-12)[2024-12-04]. .
|
31 |
MESCHEDER L, OECHSLE M, NIEMEYER M, et al. Occupancy networks: learning 3D reconstruction in function space[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 4460-4470.
|
32 |
MESCHEDER L, OECHSLE M, NIEMEYER M, et al. Occupancy networks: learning 3D reconstruction in function space[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2019: 4460-4470.
|
33 |
PAVLLO D, SPINKS G, HOFMANN T, et al. Convolutional generation of textured 3D meshes[EB/OL]. (2020-10-23) [2024-12-04]. .
|
34 |
GROUEIX T, FISHER M, KIM V G, et al. A papier-Mache approach to learning 3D surface generation[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 216-224.
|
35 |
WU J J, ZHANG C K, XUE T F, et al. Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling[EB/OL]. (2017-01-04)(2024-12-04). .
|
36 |
CHEN Z Q, KIM V G, FISHER M, et al. DECOR-GAN: 3D shape detailization by conditional refinement[C]∥2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2021: 15740-15749.
|
37 |
RIEGLER G, ULUSOY A O, GEIGER A. OctNet: learning deep 3D representations at high resolutions[C]∥2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2017: 6620-6629.
|
38 |
KARRAS T, AITTALA M, LAINE S, et al. Alias-free generative adversarial networks[C]∥Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2021: 852-863.
|
39 |
KARRAS T, LAINE S, AILA T M. A style-based generator architecture for generative adversarial networks[C]∥2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2019: 4396-4405.
|
40 |
KARRAS T, LAINE S, AITTALA M, et al. Analyzing and improving the image quality of StyleGAN[C]∥2020 Piscataway: IEEE, Press/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 8110-8119.
|
41 |
SHEN T C, GAO J, YIN K, et al. Deep marching tetrahedra: a hybrid representation for high-resolution 3D shape synthesis[C]∥Proceedings of the 35th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2021: 6087-6101.
|
42 |
GAO J, CHEN W Z, XIANG T, et al. Learning deformable tetrahedral meshes for 3D reconstruction[C]∥Proceedings of the 34th International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2020: 9936-9947.
|
43 |
GAO J, WANG Z A, XUAN J C, et al. Beyond fixed grid: learning geometric image representation with a deformable grid[C]∥Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 108-125.
|
44 |
DOI A, KOIDE A. An efficient method of triangulating equi-valued surfaces by using tetrahedral cells[J]. IEICE Transactions on Information and Systems, 1991, 74: 214-224.
|
45 |
MUNKBERG J, CHEN W Z, HASSELGREN J, et al. Extracting triangular 3D models, materials, and lighting from images[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 8270-8280.
|
46 |
LAINE S, HELLSTEN J, KARRAS T, et al. Modular primitives for high-performance differentiable rendering[J]. ACM Transactions on Graphics, 2020, 39(6): 1-14.
|
47 |
MESCHEDER L, NOWOZIN S, GEIGER A. Which training methods for GANs do actually converge?[J]. JMLR, 2018, 80: 3481-3490.
|
48 |
POOLE D J, ALLEN C B, RENDALL T. Control point-based aerodynamic shape optimization applied to AIAA ADODG test cases[C]∥53rd AIAA Aerospace Sciences Meeting. Reston: AIAA, 2015.
|