首页 >

基于地貌类别信息指导的SAR图像仿真方法

孟令捷1,李红光2,李新军2   

  1. 1. 北京航空航天大学电子信息工程学院
    2. 北京航空航天大学无人系统研究院
  • 收稿日期:2024-07-29 修回日期:2024-10-18 出版日期:2024-10-29 发布日期:2024-10-29
  • 通讯作者: 李红光
  • 基金资助:
    国家重点研发计划;国家自然科学基金

SAR image simulation method guided by geomorphic category information

  • Received:2024-07-29 Revised:2024-10-18 Online:2024-10-29 Published:2024-10-29

摘要: 当前深度学习SAR图像仿真方法一般没有考虑SAR图像不同地貌类别特征差异,导致仿真图像地貌区分失真。针对这一情况,本文提出一种地貌类别信息指导的可见光到SAR图像转换算法。算法的主要创新点为:1.设计地貌类别提取分支,使用注意力机制,从多个维度采集地貌类别信息,指导SAR图像仿真;2.设计图像内容提取分支,使用对比学习,增强网络对可见光和SAR图像共有的内容信息的特征提取能力;3.设计图像生成模块,在地貌类别信息的指导下,将内容信息转化为SAR图像,使生成的SAR图像具有对应地貌类别的特征,并使用路径正则化细分可见光到SAR图像的完整转换过程,降低实现难度。建立了具有多种不同地貌的可见光和SAR图像配对数据集,经过6类评价指标实验对比,本算法较其他代表性算法均表现出较好性能,其中结构相似度至少提升了9.24%。同时,仿真SAR图像在视觉效果上表现出更高的真实度,能够有效保留地貌类别特征。

关键词: 合成孔径雷达, 深度学习, 多类别地貌, 注意力机制, 对比学习, 路径正则化

Abstract: The current deep learning SAR image simulation methods generally do not consider the feature differences of different geomorphic categories in SAR images, resulting in the distortion of geomorphic differentiation in simulated images. In view of this situation, this paper proposes a visible-to-SAR image translation algorithm guided by geomorphic category information. The main innovations of the algorithm are as follows: 1. Design a topographic category extraction branch and use attention mechanism to collect topographic category information from multiple dimensions to guide SAR image simulation; 2. Design image content extraction branches and use contrast learning to enhance the feature extraction capability of the network for the common content information of visible light and SAR images; 3. The image generation module is designed to convert content information into SAR images under the guidance of geomorphic category information, so that the generated SAR images have features corresponding to geomorphic category, and the path regularization is used to subdivide the complete translation process from visible light to SAR images to reduce the difficulty of implementation. A pair dataset of visible and SAR images with different landforms is established. After experimental comparison of 6 evaluation indexes, the proposed algorithm has better performance than other representative algorithms, and the structural similarity is improved by at least 9.24%. At the same time, the simulated SAR image shows a higher degree of realism in the visual effect, and can effectively retain the features of landform categories.

Key words: SAR, Deep Learning, Multi-Category Terrain, Attention Mechanism, Contrastive Learning, Path Regularization

中图分类号: