首页 >

基于Tikhonov正则化的热环境下随机载荷识别方法及验证

袁野,朱琪潇,朱锐,杭晓晨,李盼,费庆国   

  1. 东南大学
  • 收稿日期:2025-05-30 修回日期:2025-09-29 出版日期:2025-10-09 发布日期:2025-10-09
  • 通讯作者: 费庆国
  • 基金资助:
    国家杰出青年科学基金;国家自然科学基金;江苏省自然科学基金;中央高校基础研究 资金;青年人才托举工程

Random load identification method and verification under thermal environment based on Tikhonov regularization

  • Received:2025-05-30 Revised:2025-09-29 Online:2025-10-09 Published:2025-10-09

摘要: 针对高速飞行器热振耦合环境下动态载荷识别精度受环境干扰的工程难题,本研究首次搭建了一套考虑热振耦合效应的随机载荷识别试验平台。该平台集成激振器与石英灯阵列分别实现随机载荷和热载荷的精准加载,结合高温加速度传感器实现了地面热环境下动响应的测量。针对温度影响,提出基于Tikhonov正则化的热环境下随机载荷识别方法,通过考虑热效应的模型修正,并在Tikhonov正则化中引入频响函数变形矩阵考虑随机载荷的应用条件,利用基于Tikhonov正则化的热环境下随机载荷识别方法对结构动态响应数据进行反演分析。最后,开展20℃常温与500℃高温环境下的对比试验研究,结果表明:该平台可以有效模拟飞行器热振耦合试验工况,实现热振耦合状态下载荷反演的需求;通过载荷反演结果,得出结论:热环境对结构参数的影响以及热扰动噪声是影响载荷识别精度的关键因素,为发展复杂热振耦合环境下随机载荷识别技术提供了理论基础和试验支撑。

关键词: 热振耦合试验, 载荷识别, 模型修正, 逆虚拟激励法, 正则化

Abstract: To address the engineering challenge of reduced accuracy in dynamic load identification under the thermal-vibration coupled envi-ronment of high-speed aircraft due to environmental interference, this study has, for the first time, established a test platform for random load identification that considers thermal-vibration coupling effects. This platform integrates a shaker and a quartz lamp array to achieve precise application of random and thermal loads, respectively, and combines high-temperature accelerometers to measure dynamic responses under ground-based thermal conditions. To account for temperature effects, a random load identification method under thermal environments based on Tikhonov regularization is proposed. By incorporating model corrections that consider thermal effects and introducing a frequency response function deformation matrix into Tikhonov regularization to account for the application conditions of random loads, the method is used to perform inversion analysis on structural dynamic response data. Finally, compara-tive experiments were conducted under normal temperature (20°C) and high temperature (500°C) conditions. The results indicate that the platform can effectively simulate the thermal-vibration coupled test conditions of an aircraft and meet the requirements of load inversion under thermal-vibration coupling states. Based on load inversion results, it was concluded that the effects of thermal envi-ronment on structural parameters and thermal disturbance noise are key factors affecting load identification accuracy, providing a theoretical foundation and experimental support for the development of random load identification technology in complex thermal-vibration coupled environments.

Key words: thermal vibration coupling test, load identification, model correction, inverse virtual excitation method, regu-larization

中图分类号: