收稿日期:
2024-01-19
修回日期:
2024-03-21
接受日期:
2024-05-06
出版日期:
2024-05-28
发布日期:
2024-05-22
通讯作者:
郑多
E-mail:zhengduohello@126.com
基金资助:
Lu BAI1, Defu LIN1, Duo ZHENG1(), Mingjun WEI2
Received:
2024-01-19
Revised:
2024-03-21
Accepted:
2024-05-06
Online:
2024-05-28
Published:
2024-05-22
Contact:
Duo ZHENG
E-mail:zhengduohello@126.com
Supported by:
摘要:
机载定向能武器是未来攻防对抗中获得非对称优势的决定性因素之一。针对定向能载荷对目标有效毁伤要求下的面对称飞行器位置、航向、倾斜姿态等多约束问题,提出一种侧向加速度补偿的定向定姿多约束机动制导策略。描述了机载定向能对地面目标实施打击的任务场景,揭示了定向能载荷约束下面对称飞行器的机动规律及其对位置、航向、倾斜姿态等的约束条件;基于面对称飞行器运动学模型及其位置、定向、定姿等多约束条件,设计了“虚拟导引-定姿攻击”的机动制导策略,协调各约束施加的时间和条件,避免了过约束可能导致的指令解算困难问题。分析了各约束条件之间的耦合关联特性,提出了虚拟导引定向制导机制,引导飞行器沿指定航向飞向目标;在此基础上,提出了基于侧向加速度补偿的定向定姿机动策略,主动产生侧向加速度以实现飞行器动态平衡,保证面对称飞行器能够同时满足并维持定向能载荷正常工作所需要的航向和倾斜角约束,确保定向能载荷拥有充足的照射时间。仿真结果表明,研究提出的基于侧向加速度补偿的机动制导策略,能够满足定向能载荷约束下面对称飞行器的定向定姿制导任务要求,对支撑机载定向能武器的实际运用具有一定的参考价值。
中图分类号:
白璐, 林德福, 郑多, 尉明军. 定向能载荷约束下面对称飞行器定向定姿制导技术[J]. 航空学报, 2024, 45(22): 330196.
Lu BAI, Defu LIN, Duo ZHENG, Mingjun WEI. Guidance technology of specified direction and attitude for plane symmetrical aircraft with directed energy load constraint[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(22): 330196.
1 | 全军军事术语管理委员会, 空军军事术语管理委员会.中国人民解放军空军军语[M]. 西安:蓝天出版社,2012: 368. |
Army Military Terminology Management Committee, Air Force Military Terminology Management Committee. Chinese people’s liberation army air force military language[M]. Xi’an: Blue Sky Press, 2012: 368 (in Chinese). | |
2 | 周新人, 卢盈齐, 刘学亮, 等. 国外定向能防空武器抗击无人机蜂群研究现状分析及思考[J]. 飞航导弹, 2021(7): 91-95. |
ZHOU X R, LU Y Q, LIU X L, et al. Analysis and thinking on the research status of directed energy air defense weapons against drone bee colony abroad[J]. Aerodynamic Missile Journal, 2021(7): 91-95 (in Chinese). | |
3 | 刘伟, 张琳, 王代强, 等. 激光武器反无人机集群作战运用及关键技术[J]. 航空学报, 2024, 45(12): 329457. |
LIU W, ZHANG L, WANG D Q, et al. Application and key technologies of laser weapons in anti-UAV swarm operations[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 329457 (in Chinese). | |
4 | 宁国栋. 应对未来战争的精确打击武器发展趋势研究[J]. 战术导弹技术, 2019(1): 1-9. |
NING G D. Trend analysis of precision strike weapon development in future warfare[J]. Tactical Missile Technology, 2019(1): 1-9 (in Chinese). | |
5 | 赵鸿燕. 国外高功率微波武器发展研究[J]. 航空兵器, 2018, 25(5): 21-28. |
ZHAO H Y. Research on overseas high power microwave weapon development[J]. Aero Weaponry, 2018, 25(5): 21-28 (in Chinese). | |
6 | US air force seeks laser, microwave weapons for aircraft [EB/OL]. (2018-11-01) [2024-5-20]. . |
7 | 刘希鹏. 打击静态目标面对称巡航导弹飞行的多维泰勒网优化控制[D]. 南京: 东南大学, 2017: 1. |
LIU X P. Multi-dimensional Taylor net optimal control of symmetrical cruise missile flying against static target[D].Nanjing: Southeast University, 2017: 1 (in Chinese). | |
8 | 邱文杰. 有动力滑翔飞行器轨迹优化与制导技术研究[D]. 北京: 北京理工大学, 2017: 1-3. |
QIU W J. Research on trajectory optimization and guidance technology of powered gliding vehicle[D].Beijing: Beijing Institute of Technology, 2017: 1-3 (in Chinese). | |
9 | 陈海青, 汪刘应, 刘顾. 国外飞航导弹发展现状及启示[J]. 飞航导弹, 2019(10): 31-35. |
CHEN H Q, WANG L Y, LIU G. Development status and enlightenment of foreign cruise missiles[J]. Aerodynamic Missile Journal, 2019(10): 31-35 (in Chinese). | |
10 | 徐晨阳, 刘克检. 机载激光武器未来发展分析[J]. 飞航导弹, 2021(4): 27-32. |
XU C Y, LIU K J. Analysis of future development of airborne laser weapons[J]. Aerodynamic Missile Journal, 2021(4): 27-32 (in Chinese). | |
11 | ZARCHAN P. Tactical and strategic missile guidance[M]. 6th ed. Reston: AIAA, 2012. |
12 | HE S M, LEE C H. Optimality of error dynamics in missile guidance problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(7): 1624-1633. |
13 | 权申明, 陈雪野, 晁涛, 等. 带落角落速约束的导弹虚拟期望落角末制导律[J]. 宇航学报, 2022, 43(8): 1070-1079. |
QUAN S M, CHEN X Y, CHAO T, et al. Terminal guidance law for missile with speed and angle constraints considering virtual expected impact angle[J]. Journal of Astronautics, 2022, 43(8): 1070-1079 (in Chinese). | |
14 | DOU L, DOU J. The design of optimal guidance law with multi-constraints using block pulse functions[J]. Aerospace Science and Technology, 2012, 23(1): 201-205. |
15 | DUVVURU R, MAITY A, UMAKANT J. Three-dimensional field of view and impact angle constrained guidance with terminal speed maximization[J]. Aerospace Science and Technology, 2022, 126: 107552. |
16 | ULYBYSHEV Y. Terminal guidance law based on proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 821-824. |
17 | LU P, DOMAN D B, SCHIERMAN J D. Adaptive terminal guidance for hypervelocity impact in specified direction[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 269-278. |
18 | RATNOO A, GHOSE D. Impact angle constrained interception of stationary targets[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1817-1822. |
19 | RATNOO A, GHOSE D. Satisfying terminal angular constraint using proportional navigation:AIAA-2009-6088[R]. Reston: AIAA, 2009. |
20 | RATNOO A, GHOSE D. Impact angle constrained guidance against nonstationary nonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 269-275. |
21 | 高峰, 唐胜景, 师娇, 等. 一种基于落角约束的偏置比例导引律[J]. 北京理工大学学报, 2014, 34(3): 277-282. |
GAO F, TANG S J, SHI J, et al. A bias proportional navigation guidance law based on terminal impact angle constraint[J]. Transactions of Beijing Institute of Technology, 2014, 34(3): 277-282 (in Chinese). | |
22 | 黎克波, 廖选平, 梁彦刚, 等. 基于纯比例导引的拦截碰撞角约束制导策略[J]. 航空学报, 2020, 41(S2): 724277. |
LI K B, LIAO X P, LIANG Y G, et al. Guidance strategy with impact angle constraint based on pure proportional navigation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724277 (in Chinese). | |
23 | 孙国鑫, 夏群利, 张道驰, 等. 可重复使用运载器自动着陆分段制导策略[J]. 系统工程与电子技术, 2019, 41(4): 856-862. |
SUN G X, XIA Q L, ZHANG D C, et al. Piecewise guidance strategy of auto-landing for reusable launch vehicle[J]. Systems Engineering and Electronics, 2019, 41(4): 856-862 (in Chinese). | |
24 | 王晓海, 孟秀云, 周峰, 等. 基于偏置比例导引的落角约束滑模制导律[J]. 系统工程与电子技术, 2021, 43(5): 1295-1302. |
WANG X H, MENG X Y, ZHOU F, et al. Sliding mode guidance law with impact angle constraint based on bias proportional navigation[J]. Systems Engineering and Electronics, 2021, 43(5): 1295-1302 (in Chinese). | |
25 | LI Z B, ZHANG X Y, ZHANG H R, et al. Three-dimensional approximate cooperative integrated guidance and control with fixed-impact time and azimuth constraints[J]. Aerospace Science and Technology, 2023, 142: 108617. |
26 | HARL N, BALAKRISHNAN S N. Reentry terminal guidance through sliding mode control[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 186-199. |
27 | LIU X D, ZHANG F D, LI Z, et al. Approach and landing guidance design for reusable launch vehicle using multiple sliding surfaces technique[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1582-1591. |
28 | VITIELLO A, LEONARDI E M, PONTANI M. Multiple-sliding-surface guidance and control for terminal atmospheric reentry and precise landing[J]. Journal of Spacecraft and Rockets, 2023, 60(3): 912-923. |
29 | ZHANG Z H, MA K M, ZHANG G P, et al. Virtual target approach-based optimal guidance law with both impact time and terminal angle constraints[J]. Nonlinear Dynamics, 2022, 107(4): 3521-3541. |
30 | HOU L B, ZHU J H, KUANG M C, et al. Impact angle control guidance to intercept moving targets by virtual target technique[J]. International Journal of Aerospace Engineering, 2021, 2021: 7210808. |
31 | 钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京:北京理工大学出版社, 2020: 48-144. |
QIAN X F, LIN R X, ZHAO Y N. Missile flight mechan-ics[M]. Beijing: Beijing Institute of Technology Press, 2020: 48-144 (in Chinese). |
[1] | 李煜 陈通文 王志刚 溫志湧 刘小雄. 基于预定义时间的直接升力着舰增量控制研究[J]. 航空学报, 0, (): 1-0. |
[2] | 王欢 周荻 张奕群 楼朝飞. 基于时变滑模的高超声速飞行器复合控制方法[J]. 航空学报, 0, (): 1-0. |
[3] | 徐鑫 李亮 李家祥 蒋家昌 危亦林. 顾及电离层梯度监测的JPALS阵列接收机设计[J]. 航空学报, 0, (): 1-0. |
[4] | 李坤 布树辉 李佳朋 王俱博玺 韩鹏程 李霄翰 李浩玮. 基于单目视觉与测距信息的无人机集群定位方法[J]. 航空学报, 0, (): 1-0. |
[5] | 尤逸轩, 纪新春, 魏东岩, 陆一, 袁洪. 一种多尺度级联地磁匹配相似性度量准则MP-S[J]. 航空学报, 2024, 45(21): 330149-330149. |
[6] | 辛宏博, 陈清阳, 王鹏, 王玉杰, 侯中喜. 滑跑三维动力学建模与纠偏控制约束分析[J]. 航空学报, 2024, 45(21): 230154-230154. |
[7] | 葛佳昊, 向锦武, 李道春. 基于组合NARX神经网络的非平稳含噪混沌时间序列在线预测[J]. 航空学报, 2024, 45(21): 330128-330128. |
[8] | 李雨函 张曙光 吴义兵. 基于肌电和眼动信号的SVO-eVTOL操纵品质评估[J]. 航空学报, 0, (): 0-0. |
[9] | 孟令捷 李红光 李新军. 基于地貌类别信息指导的SAR图像仿真方法[J]. 航空学报, 0, (): 0-0. |
[10] | 吕晓晨 史静平 吕永玺 李耕农. 传感器失效下的魔毯着舰气流角重构算法[J]. 航空学报, 0, (): 0-0. |
[11] | 杨振, 李琳, 柴仕元, 黄吉传, 朴海音, 周德云. 面向多战术需求的无人机空战自主规避机动方法[J]. 航空学报, 2024, 45(20): 630629-630629. |
[12] | 何明, 陈浩天, 韩伟, 邓成, 段海滨. 无人机仿鸟群协同控制发展现状及关键技术[J]. 航空学报, 2024, 45(20): 29946-029946. |
[13] | 李伟, 郭艳, 何明, 袁昊, 赖雪斌. 满意度驱动下无人机移动边缘计算服务缓存和资源分配方法[J]. 航空学报, 2024, 45(19): 330017-330017. |
[14] | 郑多, 初治辰, 林德福, 尉明军, 岳思怡. 考虑集群尾涡气动耦合效应飞行安全约束的协同制导技术[J]. 航空学报, 2024, 45(18): 329906-329906. |
[15] | 王潇, 刘贞报, 史忠科. 基于残差混合监督网络的无人机目标阴影检测[J]. 航空学报, 2024, 45(17): 530062-530062. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学