| 1 |
全军军事术语管理委员会, 空军军事术语管理委员会.中国人民解放军空军军语[M]. 西安:蓝天出版社,2012: 368.
|
|
Army Military Terminology Management Committee, Air Force Military Terminology Management Committee. Chinese people’s liberation army air force military language[M]. Xi’an: Blue Sky Press, 2012: 368 (in Chinese).
|
| 2 |
周新人, 卢盈齐, 刘学亮, 等. 国外定向能防空武器抗击无人机蜂群研究现状分析及思考[J]. 飞航导弹, 2021(7): 91-95.
|
|
ZHOU X R, LU Y Q, LIU X L, et al. Analysis and thinking on the research status of directed energy air defense weapons against drone bee colony abroad[J]. Aerodynamic Missile Journal, 2021(7): 91-95 (in Chinese).
|
| 3 |
刘伟, 张琳, 王代强, 等. 激光武器反无人机集群作战运用及关键技术[J]. 航空学报, 2024, 45(12): 329457.
|
|
LIU W, ZHANG L, WANG D Q, et al. Application and key technologies of laser weapons in anti-UAV swarm operations[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(12): 329457 (in Chinese).
|
| 4 |
宁国栋. 应对未来战争的精确打击武器发展趋势研究[J]. 战术导弹技术, 2019(1): 1-9.
|
|
NING G D. Trend analysis of precision strike weapon development in future warfare[J]. Tactical Missile Technology, 2019(1): 1-9 (in Chinese).
|
| 5 |
赵鸿燕. 国外高功率微波武器发展研究[J]. 航空兵器, 2018, 25(5): 21-28.
|
|
ZHAO H Y. Research on overseas high power microwave weapon development[J]. Aero Weaponry, 2018, 25(5): 21-28 (in Chinese).
|
| 6 |
US air force seeks laser, microwave weapons for aircraft [EB/OL]. (2018-11-01) [2024-5-20]. .
|
| 7 |
刘希鹏. 打击静态目标面对称巡航导弹飞行的多维泰勒网优化控制[D]. 南京: 东南大学, 2017: 1.
|
|
LIU X P. Multi-dimensional Taylor net optimal control of symmetrical cruise missile flying against static target[D].Nanjing: Southeast University, 2017: 1 (in Chinese).
|
| 8 |
邱文杰. 有动力滑翔飞行器轨迹优化与制导技术研究[D]. 北京: 北京理工大学, 2017: 1-3.
|
|
QIU W J. Research on trajectory optimization and guidance technology of powered gliding vehicle[D].Beijing: Beijing Institute of Technology, 2017: 1-3 (in Chinese).
|
| 9 |
陈海青, 汪刘应, 刘顾. 国外飞航导弹发展现状及启示[J]. 飞航导弹, 2019(10): 31-35.
|
|
CHEN H Q, WANG L Y, LIU G. Development status and enlightenment of foreign cruise missiles[J]. Aerodynamic Missile Journal, 2019(10): 31-35 (in Chinese).
|
| 10 |
徐晨阳, 刘克检. 机载激光武器未来发展分析[J]. 飞航导弹, 2021(4): 27-32.
|
|
XU C Y, LIU K J. Analysis of future development of airborne laser weapons[J]. Aerodynamic Missile Journal, 2021(4): 27-32 (in Chinese).
|
| 11 |
ZARCHAN P. Tactical and strategic missile guidance[M]. 6th ed. Reston: AIAA, 2012.
|
| 12 |
HE S M, LEE C H. Optimality of error dynamics in missile guidance problems[J]. Journal of Guidance, Control, and Dynamics, 2018, 41(7): 1624-1633.
|
| 13 |
权申明, 陈雪野, 晁涛, 等. 带落角落速约束的导弹虚拟期望落角末制导律[J]. 宇航学报, 2022, 43(8): 1070-1079.
|
|
QUAN S M, CHEN X Y, CHAO T, et al. Terminal guidance law for missile with speed and angle constraints considering virtual expected impact angle[J]. Journal of Astronautics, 2022, 43(8): 1070-1079 (in Chinese).
|
| 14 |
DOU L, DOU J. The design of optimal guidance law with multi-constraints using block pulse functions[J]. Aerospace Science and Technology, 2012, 23(1): 201-205.
|
| 15 |
DUVVURU R, MAITY A, UMAKANT J. Three-dimensional field of view and impact angle constrained guidance with terminal speed maximization[J]. Aerospace Science and Technology, 2022, 126: 107552.
|
| 16 |
ULYBYSHEV Y. Terminal guidance law based on proportional navigation[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 821-824.
|
| 17 |
LU P, DOMAN D B, SCHIERMAN J D. Adaptive terminal guidance for hypervelocity impact in specified direction[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 269-278.
|
| 18 |
RATNOO A, GHOSE D. Impact angle constrained interception of stationary targets[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(6): 1817-1822.
|
| 19 |
RATNOO A, GHOSE D. Satisfying terminal angular constraint using proportional navigation:AIAA-2009-6088[R]. Reston: AIAA, 2009.
|
| 20 |
RATNOO A, GHOSE D. Impact angle constrained guidance against nonstationary nonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 269-275.
|
| 21 |
高峰, 唐胜景, 师娇, 等. 一种基于落角约束的偏置比例导引律[J]. 北京理工大学学报, 2014, 34(3): 277-282.
|
|
GAO F, TANG S J, SHI J, et al. A bias proportional navigation guidance law based on terminal impact angle constraint[J]. Transactions of Beijing Institute of Technology, 2014, 34(3): 277-282 (in Chinese).
|
| 22 |
黎克波, 廖选平, 梁彦刚, 等. 基于纯比例导引的拦截碰撞角约束制导策略[J]. 航空学报, 2020, 41(S2): 724277.
|
|
LI K B, LIAO X P, LIANG Y G, et al. Guidance strategy with impact angle constraint based on pure proportional navigation[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(S2): 724277 (in Chinese).
|
| 23 |
孙国鑫, 夏群利, 张道驰, 等. 可重复使用运载器自动着陆分段制导策略[J]. 系统工程与电子技术, 2019, 41(4): 856-862.
|
|
SUN G X, XIA Q L, ZHANG D C, et al. Piecewise guidance strategy of auto-landing for reusable launch vehicle[J]. Systems Engineering and Electronics, 2019, 41(4): 856-862 (in Chinese).
|
| 24 |
王晓海, 孟秀云, 周峰, 等. 基于偏置比例导引的落角约束滑模制导律[J]. 系统工程与电子技术, 2021, 43(5): 1295-1302.
|
|
WANG X H, MENG X Y, ZHOU F, et al. Sliding mode guidance law with impact angle constraint based on bias proportional navigation[J]. Systems Engineering and Electronics, 2021, 43(5): 1295-1302 (in Chinese).
|
| 25 |
LI Z B, ZHANG X Y, ZHANG H R, et al. Three-dimensional approximate cooperative integrated guidance and control with fixed-impact time and azimuth constraints[J]. Aerospace Science and Technology, 2023, 142: 108617.
|
| 26 |
HARL N, BALAKRISHNAN S N. Reentry terminal guidance through sliding mode control[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 186-199.
|
| 27 |
LIU X D, ZHANG F D, LI Z, et al. Approach and landing guidance design for reusable launch vehicle using multiple sliding surfaces technique[J]. Chinese Journal of Aeronautics, 2017, 30(4): 1582-1591.
|
| 28 |
VITIELLO A, LEONARDI E M, PONTANI M. Multiple-sliding-surface guidance and control for terminal atmospheric reentry and precise landing[J]. Journal of Spacecraft and Rockets, 2023, 60(3): 912-923.
|
| 29 |
ZHANG Z H, MA K M, ZHANG G P, et al. Virtual target approach-based optimal guidance law with both impact time and terminal angle constraints[J]. Nonlinear Dynamics, 2022, 107(4): 3521-3541.
|
| 30 |
HOU L B, ZHU J H, KUANG M C, et al. Impact angle control guidance to intercept moving targets by virtual target technique[J]. International Journal of Aerospace Engineering, 2021, 2021: 7210808.
|
| 31 |
钱杏芳, 林瑞雄, 赵亚男. 导弹飞行力学[M]. 北京:北京理工大学出版社, 2020: 48-144.
|
|
QIAN X F, LIN R X, ZHAO Y N. Missile flight mechan-ics[M]. Beijing: Beijing Institute of Technology Press, 2020: 48-144 (in Chinese).
|