[1] Green B E, Findlay D. CFD Analysis of the F/A-18E Super Hornet during Aircraft-Carrier Landing High-Lift Aerodynamic Conditions[C]//AIAA Aerospace Scienc-es Meeting. 2015.[2] 胡伟, 万文章,陈谋. 基于神经网络和干扰观测器的UAV自动着舰控制[J]. 航空学报, 2022, 43(S01): 72693.[3] Duan H B, Chen L, Zeng Z G. Automatic Landing for Carrier-Based Aircraft Under the Conditions of Deck Motion and Carrier Airwake Disturbances[J]. IEEE Transactions on Aerospace and Electronic Systems. 2022, 58(6): 5276-5291.[4] Zhang Y, Wu W H, Wang J, et al. Prescribed perfor-mance adaptive constrained backstepping controller for carrier-based longitudinal landing with magnitude con-straints[C]// 2017 36th Chinese Control Conference (CCC), Dalian, China, 2017: 856-861.[5] Wang L, Yuan D, Yuan Z X et al. Automatic landing of carrier-based aircraft based on a collaboration of fault reconstruction and fault-tolerant control[J]. Aerospace Science and Technology, 2024, 144: 108772.1-108772.15.[6] Li Y, Liu X X, Zhao H, et al. Design of control law for Carrier-based Aircraft based on L1 adaptive con-trol[C]//2018 IEEE CSAA Guidance, Navigation and Control Conference. IEEE, Xiamen, China, 2018: 1-6.[7] Denham J W. Project MAGIC CARPET: "Advanced Controls and Displays for Precision Carrier Land-ings"[C]//54th AIAA Aerospace Sciences Meeting. 2016.[8] 吴文海, 汪节, 高丽, 等. MAGIC CARPET着舰技术分析[J]. 系统工程与电子技术, 2018, 40(9): 2079-2091.[9] 段卓毅, 王伟, 耿建中, 等. 舰载机人工进场着舰精确轨迹控制技术[J].航空学报, 2019, 40(4): 622328.[10] 罗飞, 张军红, 王博, 等. 基于直接升力与动态逆的舰尾流抑制方法[J]. 航空学报, 2021, 42(12): 124770.[11] 何胜涛, 江驹, 余朝军, 等. 基于自适应固定时间的直接升力着舰容错控制[J]. 电光与控制, 2023, 30(9): 29-35.[12] 孙笑云, 江驹, 甄子洋, 等. 舰载飞机自适应模糊直接力着舰控制[J]. 西北工业大学学报, 2021, 39(2): 359-366.[13] 柳仁地, 江驹, 张哲, 等. 基于强化学习的舰载机着舰直接升力控制技术[J/OL]. 北京航空航天大学学报, 1-17[2024-07-23]. https://doi.org/10.13700/j.bh.1001-5965. 2023.0403. [14] Wu C H, Yan J G, Shen J H, et al. Predefined-Time Attitude Stabilization of Receiver Aircraft in Aerial Re-fueling[J] IEEE Transactions on Circuits and Systems II: Express Briefs,2021, 68(10): 3321-3325.[15] Dong Y, Zou A M, Sun Z W. Predefined-Time Prede-fined-Bounded Attitude Tracking Control for Rigid Spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 464-472. [16] Xie, S Z, Chen, Q. Adaptive Nonsingular Predefined-Time Control for Attitude Stabilization of Rigid Space-crafts[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 69(1): 189–193. [17] Ni J K, Liu L, Liu C, et al. Fixed-time dynamic surface high-order sliding mode control for chaotic oscillation in power system[J]. Nonlinear Dynamics, 2016, 86(1): 401-420.[18] Yu X, Wu Z J. Corrections to stochastic barbalat’s lem-ma and its applications[J]. IEEE Transactions on Auto-matic Control, 2014, 59(5): 1386-1390.[19] H. K. Khalil, Nonlinear System, 3rd ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 2002[20] Yang H J, Cheng L, Zhang J H, et al. Leader-Follower Trajectory Control for Quadrotors via Tracking Differ-entiators and Disturbance Observers[J]. IEEE Transac-tions on Systems, Man, and Cybernetics. Systems, 2021, 51(1): 601-609.[21] Li Y, Liu X X, Ming R C, et al. Improved model refer-ence-based adaptive nonlinear dynamic inversion for fault-tolerant flight control[J]. International Journal of Robust, Nonlinear, and Control, 2023, 33(17): 10328-10359.[22] 郭锁凤. 先进飞行控制系统[M]. 国防工业出版社, 2003.[23] Li Y, Liu X X, Lu P, et al. Angular acceleration estima-tion-based incremental nonlinear dynamic inversion for robust flight control[J]. Control Engineering Practice, 2021, 117, 104938.[24] Pollack, T, van Kampen, E. J. Robust Stability and Performance Analysis of Incremental Dynamic Inver-sion-Based Flight Control Laws[J]. Journal of Guid-ance, Control, and Dynamics, 2023, 46(9), 1785-1798. |