1 |
纪毅, 王伟, 张宏岩, 等. 面向高机动目标拦截任务的空空导弹制导方法综述[J]. 航空兵器, 2022, 29(6): 15-25.
|
|
JI Y, WANG W, ZHANG H Y, et al. A survey on guidance method of air-to-air missiles facing high maneuvering targets[J]. Aero Weaponry, 2022, 29(6): 15-25 (in Chinese).
|
2 |
WANG X X, LAN G, LU H Q, et al. Three-dimensional integrated guidance and control with input saturation and impact angle constraints[J]. Aerospace Science and Technology, 2022, 127: 107727.
|
3 |
盛永智, 甘佳豪, 张成新. 弹道可调的落角约束分数阶滑模制导律设计[J]. 航空学报, 2023, 44(7): 327073.
|
|
SHENG Y Z, GAN J H, ZHANG C X. Fractional order sliding mode guidance law design with trajectory adjustable and terminal angular constraint[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 327073 (in Chinese).
|
4 |
姚郁, 郑天宇, 贺风华, 等. 飞行器末制导中的几个热点问题与挑战[J]. 航空学报, 2015, 36(8): 2696-2716.
|
|
YAO Y, ZHENG T Y, HE F H, et al. Several hot issues and challenges in terminal guidance of flight vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8): 2696-2716 (in Chinese).
|
5 |
WANG J N, DING X J, CHEN Y D, et al. Field-of-view constrained three-dimensional impact angle control guidance for speed-varying missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(5): 3992-4003.
|
6 |
张宽桥, 刘连照, 马晖, 等. 考虑攻击角约束和输入饱和的制导控制一体化设计[J]. 弹道学报, 2021, 33(3): 9-18.
|
|
ZHANG K Q, LIU L Z, MA H, et al. Design on integrated guidance and control considering the constraint of impact angle and input saturation[J]. Journal of Ballistics, 2021, 33(3): 9-18 (in Chinese).
|
7 |
WILLIAMS D, RICHMAN J, FRIEDLAND B. Design of an integrated strapdown guidance and control system for a tactical missile[C]∥Proceedings of the Guidance and Control Conference. Reston: AIAA, 1983.
|
8 |
李政, 于剑桥, 赵新运. 空空导弹敏捷转弯固定时间收敛滑模控制[J]. 航空学报, 2023, 44(8): 327262.
|
|
LI Z, YU J Q, ZHAO X Y. Fixed-time convergent sliding mode control for agile turn of air-to-air missiles[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(8): 327262 (in Chinese).
|
9 |
GUO J G, PENG Q, GUO Z Y. SMC-based integrated guidance and control for beam riding missiles with limited LBPU[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2969-2978.
|
10 |
CHANG J, GUO Z Y, CIESLAK J, et al. Integrated guidance and control design for the hypersonic interceptor based on adaptive incremental backstepping technique[J]. Aerospace Science and Technology, 2019, 89: 318-332.
|
11 |
LIANG L C, ZHAO B, ZHOU J, et al. Impact angle controlled integrated guidance and control with input and state constraints[J/OL]. International Journal of Control, (2023-03-18) [2023-04-16]. .
|
12 |
ZHANG W G, YI W J. Composite adaptive dynamic programming for missile interception systems with multiple constraints and less sensor requirement[J]. ISA Transactions, 2021, 117: 40-53.
|
13 |
SUN B, VAN KAMPEN E J. Reinforcement-learning-based adaptive optimal flight control with output feedback and input constraints[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(9): 1685-1691.
|
14 |
段广仁. 飞行器控制的伪线性系统方法: 第一部分: 综述与问题[J]. 宇航学报, 2020, 41(6): 633-646.
|
|
DUAN G R. Quasi-linear system approaches for flight vehicle control—Part 1: An overview and problems[J]. Journal of Astronautics, 2020, 41(6): 633-646 (in Chinese).
|
15 |
DUAN G R. High-order fully actuated system approaches: Part I. Models and basic procedure[J]. International Journal of Systems Science, 2021, 52(2): 422-435.
|
16 |
DUAN G R. High-order fully actuated system approaches: Part II. Generalized strict-feedback systems[J]. International Journal of Systems Science, 2021, 52(3): 437-454.
|
17 |
XIAO F Z, CHEN L Q. Attitude control of spherical liquid-filled spacecraft based on high-order fully actuated system approaches[J]. Journal of Systems Science and Complexity, 2022, 35(2): 471-480.
|
18 |
LIU W Z, DUAN G R, HOU M Z. High-order command filtered adaptive backstepping control for second- and high-order fully actuated strict-feedback systems[J]. Journal of the Franklin Institute, 2023, 360(6): 3989-4015.
|
19 |
LIU G Q, ZHANG K, LI B. Fully-actuated system approach based optimal attitude tracking control of rigid spacecraft with actuator saturation[J]. Journal of Systems Science and Complexity, 2022, 35(2): 688-702.
|
20 |
刘明, 范睿超, 邱实, 等. 基于全驱系统理论的航天器姿轨预设性能控制[J]. 航空学报, 2024, 45(1): 628313.
|
|
LIU M, FAN R C, QIU S, et al. Spacecraft attitude-orbit prescribed performance control based on fully actuated system approach[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(1): 628313 (in Chinese).
|
21 |
CHEN S W, WANG W, FAN J F, et al. Impact angle constraint guidance law using fully-actuated system approach[J]. Aerospace Science and Technology, 2023, 136: 108220.
|
22 |
安通, 王鹏, 王建华, 等. 弹性高超声速飞行器动态面制导控制一体化设计方法[J]. 系统工程与电子技术, 2022, 44(3): 956-966.
|
|
AN T, WANG P, WANG J H, et al. Integrated guidance and control schemes for dynamic surface of flexible hypersonic vehicles[J]. Systems Engineering and Electronics, 2022, 44(3): 956-966 (in Chinese).
|
23 |
LI Z B, DONG Q L, ZHANG X Y, et al. Impact angle-constrained integrated guidance and control for supersonic skid-to-turn missiles using backstepping with global fast terminal sliding mode control[J]. Aerospace Science and Technology, 2022, 122: 107386.
|
24 |
WU T, SHI S Y, ZHANG D, et al. On backstepping control for a class of multiple uncertain systems with reduced-order ESO[J]. International Journal of Control, 2023, 96(2): 309-320.
|
25 |
SHAO X L, WANG H L. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO[J]. ISA Transactions, 2015, 57: 10-22.
|
26 |
赵斌, 梁乐成, 蒋瑞民, 等. 终端角度约束制导及制导控制一体化方法综述[J]. 宇航学报, 2022, 43(5): 563-579.
|
|
ZHAO B, LIANG L C, JIANG R M, et al. Review of guidance and integrated guidance and control methods under terminal angle constraints[J]. Journal of Astronautics, 2022, 43(5): 563-579 (in Chinese).
|
27 |
DUAN G R. High-order fully actuated system approaches: Part III. Robust control and high-order backstepping[J]. International Journal of Systems Science, 2021, 52(5): 952-971.
|
28 |
DUAN G R. High-order fully actuated system approaches: Part VII. Controllability, stabilisability and parametric designs[J]. International Journal of Systems Science, 2021, 52(14): 3091-3114.
|
29 |
王晓海, 孟秀云, 周峰, 等. 基于偏置比例导引的落角约束滑模制导律[J]. 系统工程与电子技术, 2021, 43(5): 1295-1302.
|
|
WANG X H, MENG X Y, ZHOU F, et al. Sliding mode guidance law with impact angle constraint based on bias proportional navigation[J]. Systems Engineering and Electronics, 2021, 43(5): 1295-1302 (in Chinese).
|