1 |
蒋雨晴. 固体装药型面通用设计方法研究[D]. 北京: 北京航空航天大学, 2018.
|
|
JIANG Y Q. Study on general design method of solid grain internal surface[D]. Beijing: Beihang University, 2018 (in Chinese).
|
2 |
VANDENBRANDE J. DARPA TRADES challenge problems[EB/OL]. (2020-06-03)[2023-05-31]. .
|
3 |
WU Z P, WANG D H, ZHANG W H, et al. Solid-rocket-motor performance-matching design framework[J]. Journal of Spacecraft and Rockets, 2017, 54(3): 698-707.
|
4 |
MESGARI S, BAZAZZADEH M, MOSTOFIZADEH A. Finocyl grain design using the genetic algorithm in combination with adaptive basis function construction[J]. International Journal of Aerospace Engineering, 2019, 2019: 3060173.
|
5 |
HASHISH A, AHMED M Y, ABDALLAH H, et al. Design of solid propellant grain for predefined performance criteria: AIAA-2019-2014[R]. Reston: AIAA, 2019.
|
6 |
ALBARADO K, HARTFIELD R, HURSTON B, et al. Solid rocket motor performance matching using pattern search/particle swarm optimization: AIAA-2011-5798[R]. Reston: AIAA, 2011.
|
7 |
LI W T, LI W B, HE Y Q, et al. Reverse design of solid propellant grain for a performance-matching goal: Shape optimization via evolutionary neural network[J]. Aerospace, 2022, 9(10): 552.
|
8 |
MAUTE K, DE S. Shape and material optimization of problems with dynamically evolving interfaces applied to solid rocket motors[J]. Structural and Multidisciplinary Optimization, 2022, 65(8): 218.
|
9 |
YOSHIMURA M, SHIMOYAMA K, MISAKA T, et al. Topology optimization of fluid problems using genetic algorithm assisted by the Kriging model[J]. International Journal for Numerical Methods in Engineering, 2017, 109(4): 514-532.
|
10 |
BENDSØE M P. Optimal shape design as a material distribution problem[J]. Structural Optimization, 1989, 1(4): 193-202.
|
11 |
BENDSØE M P, KIKUCHI N. Generating optimal topologies in structural design using a homogenization method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2): 197-224.
|
12 |
SFORZINI R H. Automated approach to design of solid rockets[J]. Journal of Spacecraft and Rockets, 1981, 18(3): 200-205.
|
13 |
GREFEN B, BECKER J, LINKE S, et al. Design, production and evaluation of 3D-printed mold geometries for a hybrid rocket engine[J]. Aerospace, 2021, 8(8): 220.
|
14 |
CHANDRU R A, BALASUBRAMANIAN N, OOMMEN C, et al. Additive manufacturing of solid rocket propellant grains[J]. Journal of Propulsion and Power, 2018, 34(4): 1090-1093.
|
15 |
王璐, 赵永超, 苗楠, 等. 复合固体推进剂直写式3D打印工艺及其性能[J]. 固体火箭技术, 2021, 44(5): 650-655.
|
|
WANG L, ZHAO Y C, MIAO N, et al. Direct-writing 3D printing technology and characteristics of composite solid propellant[J]. Journal of Solid Rocket Technology, 2021, 44(5): 650-655 (in Chinese).
|
16 |
GUIRGUIS D, AULIG N, PICELLI R, et al. Evolutionary black-box topology optimization: Challenges and promises[J]. IEEE Transactions on Evolutionary Computation, 2020, 24(4): 613-633.
|
17 |
SETHIAN J A. Curvature and the evolution of fronts[J]. Communications in Mathematical Physics, 1985, 101(4): 487-499.
|
18 |
LIU Y Q, YIN K X, BAO F T, et al. Efficient simulation of grain burning surface regression[J]. Advanced Materials Research, 2012, 466/467: 314-318.
|
19 |
CAPOZZOLI A, CURCIO C, LISENO A, et al. A comparison of Fast Marching, Fast Sweeping and Fast Iterative Methods for the solution of the eikonal equation[C]∥ 2013 21st Telecommunications Forum Telfor. Piscataway: IEEE Press, 2013: 685-688.
|
20 |
李文韬,何允钦,张艺仪,等.非均匀装药的复杂燃面退移与内弹道性能预示[J/OL].北京航空航天大学学报,(2022-11-17)[2023-05-31]. .
|
|
LI W T, HE Y Q, ZHANG Y Y, et al. Complex burning surface burn-back analysis and internal ballistic performance prediction of non-uniform grain[J]. Journal of Beijing University of Aeronautics and Astronautics, (2022-11-17)[2023-05-31]. (in Chinese).
|
21 |
MOKRÝ P. Iterative method for solving the eikonal equation[C]∥ Optics and Measurement International Conference. 2016: 263-268.
|
22 |
CHURBANOV A G, VABISHCHEVICH P N. Numerical solving a boundary value problem for the eikonal equation[C]∥ International Conference on Finite Difference Methods. Cham: Springer, 2019: 28-34.
|
23 |
CRANE K, WEISCHEDEL C, WARDETZKY M. Geodesics in heat: A new approach to computing distance based on heat flow[J]. ACM Transactions on Graphics, 2013, 32(5): 152.
|
24 |
PATANKAR S V. Numerical heat transfer and fluid flow[M]. New York: Hemisphere Publishing Corporation, 1980.
|
25 |
WANG M Y, WANG X M, GUO D M. A level set method for structural topology optimization[J]. Computer Methods in Applied Mechanics and Engineering, 2003, 192(1/2): 227-246.
|
26 |
WANG M Y, ZHOU S W. Phase field: A variational method for structural topology optimization[J]. CMES - Computer Modeling in Engineering and Sciences, 2004, 6(6): 547-566.
|
27 |
DE RUITER M J, VAN KEULEN F. Topology optimization using a topology description function[J]. Structural and Multidisciplinary Optimization, 2004, 26(6): 406-416.
|
28 |
RENNICH S C, STOSIC D, DAVIS T A. Accelerating sparse Cholesky factorization on GPUs[J]. Parallel Computing, 2016, 59: 140-150.
|
29 |
WILLCOX M A, BREWSTER M Q, TANG K C, et al. Solid propellant grain design and burnback simulation using a minimum distance function[J]. Journal of Propulsion and Power, 2007, 23(2): 465-475.
|
30 |
LI W B, LI W T, CHENG L, et al. Trajectory optimization with complex obstacle avoidance constraints via homotopy network sequential convex programming[J]. Aerospace, 2022, 9(11): 720.
|
31 |
WALL M. GAlib: A C++ library of genetic algorithm components[EB/OL]. [2023-05-31]. .
|
32 |
JACOB B, GUENNEBAUD G. Eigen[EB/OL]. (2021-08-18)[2023-05-31]. .
|
33 |
DAVIS T. Suitesparse:A suite of sparse matrix software[EB/OL]. (2022-11-12)[2023-05-31]. .
|
34 |
WELLER H, GREENSHIELDS C, DE ROUVRAY C. OpenFOAM[EB/OL]. (2022-07-28)[2023-05-31]. .
|
35 |
MARTIN P, BARRANQUERO C, SANCHEZ J, et al. OpenNN: Open neural networks library[EB/OL]. (2022-11-11)[2023-05-31]. .
|