收稿日期:
2023-09-22
修回日期:
2023-10-10
接受日期:
2023-11-01
出版日期:
2023-11-09
发布日期:
2023-11-07
通讯作者:
左洪福
E-mail:rms@nuaa.edu.cn
基金资助:
Pengtao LI1, Hongfu ZUO1(), Wen XIAO1, Zezhong GUO1, Zhexun YUAN2
Received:
2023-09-22
Revised:
2023-10-10
Accepted:
2023-11-01
Online:
2023-11-09
Published:
2023-11-07
Contact:
Hongfu ZUO
E-mail:rms@nuaa.edu.cn
Supported by:
摘要:
叶片作为航空发动机的重要组成部分,其损伤与维修对飞机运行安全、运营成本具有重要影响。为提高维修质量和效率,国内外学者对叶片维修进行了诸多理论和工艺方法研究。为进一步分析损伤叶片的维修过程,总结了风扇叶片、压气机叶片、涡轮叶片、整体叶盘叶片的损伤类型与原因,详细分析了相应的维修技术路线。原位维修研究薄弱,重点说明了原位维修相关技术与装备、相关的优化方法及新技术的应用。最后,对航空发动机叶片维修领域的研究及发展方向进行了展望,为后续从事该方面研究的人员提供参考及借鉴。
中图分类号:
李鹏涛, 左洪福, 肖文, 郭泽中, 袁哲恂. 航空发动机叶片损伤及其修复技术研究与展望[J]. 航空学报, 2024, 45(15): 29635-029635.
Pengtao LI, Hongfu ZUO, Wen XIAO, Zezhong GUO, Zhexun YUAN. Research and prospect of aero engine blade damage and its repair technology[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(15): 29635-029635.
1 | 新华社记者. 让中国的飞机用上更加强劲的“中国心” [N]. 人民日报, 2023-09-04(1). |
Xinhua News Agency. Let China’s aircraft use more powerful “China heart” [N]. People’s Daily,2023-09-04(1) (in Chinese). | |
2 | 赵欢, 姜宗民, 丁汉. 航空发动机叶片叶缘随形磨抛刀路规划[J]. 航空学报, 2021, 42(10): 524318. |
ZHAO H, JIANG Z M, DING H. Tool path planning for profiling grinding of aero-engine blade edge[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 524318 (in Chinese). | |
3 | 段发阶, 牛广越, 周琦, 等. 航空发动机叶尖间隙在线测量技术研究综述[J]. 航空学报, 2022, 43(9): 626014. |
DUAN F J, NIU G Y, ZHOU Q, et al. A review of online blade tip clearance measurement technologies for aeroengines[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 626014 (in Chinese). | |
4 | 王辉, 吴宝海, 李小强. 新一代商用航空发动机叶片的先进加工技术[J]. 航空制造技术, 2014, 57(20): 26-31. |
WANG H, WU B H, LI X Q. Advanced machining technology of new generation commercial aeroengine blade[J]. Aeronautical Manufacturing Technology, 2014, 57(20): 26-31 (in Chinese). | |
5 | 易中辉. 基于混合现实平台的发动机叶片损伤识别研究[D]. 广汉: 中国民用航空飞行学院, 2021. |
YI Z H. Research on defects identification of engine blade based on mixed reality platform[D].Guanghan: Civil Aviation Flight University of China, 2021 (in Chinese). | |
6 | YANG P P, YUE W H, LI J, et al. Review of damage mechanism and protection of aero-engine blades based on impact properties[J]. Engineering Failure Analysis, 2022, 140: 106570. |
7 | GUAN Y P, ZHAO Z H, CHEN W, et al. Foreign object damage to fan rotor blades of aeroengine Part II: Numerical simulation of bird impact[J]. Chinese Journal of Aeronautics, 2008, 21(4): 328-334. |
8 | 张海洋, 王相平, 杜少辉, 等. 航空发动机风扇叶片的抗鸟撞设计[J]. 航空动力学报, 2020, 35(6): 1157-1168. |
ZHANG H Y, WANG X P, DU S H, et al. Design for anti-bird impact of aero-engine fan blade[J]. Journal of Aerospace Power, 2020, 35(6): 1157-1168 (in Chinese). | |
9 | XIE Z B, MA Z Y, CHEN Q G, et al. Foreign object damage simulation of aero-engine blade[J]. Journal of Physics: Conference Series, 2020, 1678(1): 012020. |
10 | SHARMA R, SINGH S, SINGH A K. Foreign object damage investigation of a bypass vane of an aero-engine[J]. Materials Today: Proceedings, 2018, 5(9): 17717-17724. |
11 | SHANG H B, SUN C, LIU J X, et al. Deep learning-based borescope image processing for aero-engine blade in situ damage detection[J]. Aerospace Science and Technology, 2022, 123: 107473. |
12 | 王浩, 王立文, 王涛, 等. 航空发动机损伤叶片再制造修复方法与实现[J]. 航空学报, 2016, 37(3): 1036-1048. |
WANG H, WANG L W, WANG T, et al. Method and implementation of remanufacture and repair of aircraft engine damaged blades[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3): 1036-1048 (in Chinese). | |
13 | 白瑞金, 张利国. 涡轮叶片修复及其市场分析[J]. 航空制造技术, 2002, 45(12): 37-40. |
BAI R J, ZHANG L G. Turbine blade repairing and its market analysis[J]. Aeronautical Manufacturing Technology, 2002, 45(12): 37-40 (in Chinese). | |
14 | 孙聪. 民用航空发动机叶片损伤原位检测与评价技术[D]. 哈尔滨: 哈尔滨工业大学, 2022. |
SUN C. In situ detection and evaluation technology of aeroengine blade damage[D].Harbin: Harbin Institute of Technology, 2022 (in Chinese). | |
15 | 张胜, 侯金保, 李晓红. 大推力航空发动机热端部件损伤修复技术综述[C]∥ 大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集. 北京: 中国航空学会, 2007: 2645-2650. |
ZHANG S, HOU J B, LI X H. Review of repair tech niques for hot end components of high-thrust aero engines[C]∥ Proceedings of the High-level Forum on Key Technologies of Large Aircraft and the 2007 Academic Annual Meeting of the Chinese Society of Aeronautics and Astronautics. Beijing: Chinese Society of Aeronautics and Astronautics, 2007: 2645-2650 (in Chinese). | |
16 | 陈懋章, 刘宝杰. 风扇/压气机气动设计技术发展趋势: 用于大型客机的大涵道比涡扇发动机[J]. 航空动力学报, 2008, 23(6): 961-975. |
CHEN M Z, LIU B J. Fan/compressor aero design trend and challenge on the development of high bypass ratio turbofan[J]. Journal of Aerospace Power, 2008, 23(6): 961-975 (in Chinese). | |
17 | 关玉璞, 陈伟, 高德平. 航空发动机叶片外物损伤研究现状[J]. 航空学报, 2007, 28(4): 851-857. |
GUAN Y P, CHEN W, GAO D P. Present status of investigation of foreign object damage to blade in aeroengine[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(4): 851-857 (in Chinese). | |
18 | FARAHANI H K, KETABCHI M, ZANGENEH S, et al. Characterization of damage induced by impacting objects in udimet-500 alloy[J]. Journal of Failure Analysis and Prevention, 2016, 16(4): 629-634. |
19 | Engines, aircraft, turbojet and turbofan: [S]. 1973. |
20 | Engines, aircraft, turbine: JSGS-87231A [S]. 1995. |
21 | Engine structural integrity program (ENSIP): MIL-STD-1783[R]. 1984. |
22 | Engine structural integrity program (ENSIP): MIL-HDBK-1783B[R]. 2004. |
23 | 国防科学技术工业委员会. 航空涡轮喷气和涡轮风扇发动机通用规范: [S]. 北京: 国防科学技术工业委员会, 1987. |
Commission of Science. General specification for aviation turbojet and turbofan engines: [S]. Beijing: Commission of Science, 1987 (in Chinese). | |
24 | 康继东.钛制压气机叶片受硬物击伤的维修性研究[D].南京: 南京航空航天大学, 1996. |
KANG J D. Study on maintainability of titanium compressor blades damaged by hard objects[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 1996 (in Chinese). | |
25 | 陶春虎, 钟培道, 王仁智, 等. 航空发动机转动部件的失效与预防[M]. 北京: 国防工业出版社, 2000. |
TAO C H, ZHONG P D, WANG R Z, et al. Failure analysis and prevention for rotor in aero-engine[M]. Beijing: National Defense Industry Press, 2000 (in Chinese). | |
26 | 宋兆泓. 航空发动机典型故障分析[M]. 北京: 北京航空航天大学出版社, 1993. |
SONG Z H. Typical fault analysis of aero-engine[M]. Beijing: Beijing University of Aeronautics & Astronautics Press, 1993 (in Chinese). | |
27 | Aerospace FOD Prevention National. FOD prevention guideline: 1-800-FOD-1121[R]. [S. l.]: National Aerospace FOD Prevention, Inc, 2000. |
28 | 胡绪腾. 外物损伤及其对钛合金叶片高循环疲劳强度的影响[D]. 南京: 南京航空航天大学, 2009. |
HU X T. Foreign object damage and its effect on high cycle fatigue strength of titanium alloy engine blades[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese). | |
29 | MICHAELS K, 李璇. 发动机叶片的维修与更换[J]. 航空维修与工程, 2016(1): 24-25. |
MICHAELS K, LI X. Fan blade repair or replacement[J]. Aviation Maintenance & Engineering, 2016(1): 24-25 (in Chinese). | |
30 | 马超, 武耀罡, 师利中, 等. 航空发动机风扇叶片硬物冲击损伤的统计分析[J]. 航空维修与工程, 2016(3): 41-42. |
MA C, WU Y G, SHI L Z, et al. Statistical analysis on hard object impact damage for aero-engine fan blade[J]. Aviation Maintenance & Engineering, 2016(3): 41-42 (in Chinese). | |
31 | 马超, 王玉娜, 武耀罡, 等. 航空发动机风扇叶片硬物冲击损伤特征[J]. 航空动力学报, 2017, 32(5): 1105-1111. |
MA C, WANG Y N, WU Y G, et al. Hard object impact damage characteristics of aero engine fan blade[J]. Journal of Aerospace Power, 2017, 32(5): 1105-1111 (in Chinese). | |
32 | 万煜玮. 风扇叶片外物损伤后的疲劳性能预测方法研究[D]. 南京: 南京航空航天大学, 2018. |
WAN Y W. Research on fatigue prediction for fan blade following foreign object damage[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
33 | 马超, 王玉娜, 张雄飞, 等. 民用航空发动机持续适航维修特性评估[J]. 航空发动机, 2019, 45(4): 97-102. |
MA C, WANG Y N, ZHANG X F, et al. Evaluation on continued airworthiness maintenance characteristics of civil aviation engine[J]. Aeroengine, 2019, 45(4): 97-102 (in Chinese). | |
34 | 陈云永, 杨小贺, 卫飞飞. 大涵道比风扇设计技术发展趋势[J]. 航空学报, 2017, 38(9): 520953. |
CHEN Y Y, YANG X H, WEI F F. Development trend of high bypass ratio turbofans design technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9): 520953 (in Chinese). | |
35 | SUN Y C, ZHANG Y M, ZHOU Y D, et al. Evaluating impact damage of flat composite plate for surrogate bird-strike testing of aeroengine fan blade[J]. Journal of Composites Science, 2021, 5(7): 171. |
36 | 陈柳金, 何法江, 吕鸿雁. 民用航空发动机叶片损伤研究[J]. 物流科技, 2022, 45(1): 59-61. |
CHEN L J, HE F J, LV H Y. Study on blade damage of civil aviation engine[J]. Logistics Sci-Tech, 2022, 45(1): 59-61 (in Chinese). | |
37 | SCHIJVE J. Fatigue of structures and materials[M]. Dordrecht: Kluwer Academic, 2001. |
38 | 寇海军. 民航发动机高压压气机叶片多工况振动特性及疲劳研究[D]. 天津: 天津大学, 2017. |
KOU H J. Research on multi-point vibration characteristics and fatigue of civil aviation engine high-pressure compressor blade[D].Tianjin: Tianjin University, 2017 (in Chinese). | |
39 | 付曦. 多种载荷效应的疲劳损伤模型与压气机叶片寿命预测研究[D]. 天津: 天津大学, 2018. |
FU X. Research on fatigue damage model under multi-load effect and life prediction of compressor blade[D].Tianjin: Tianjin University, 2018 (in Chinese). | |
40 | 邓小禾, 赵永红. 航空发动机压气机叶片疲劳寿命的研究[J]. 新疆工学院学报, 2000(3): 221-225. |
DENG X H, ZHAO Y H. Research into service life of vanes of aerial-engines[J]. Journal of Xinjiang Institute of Technology, 2000(3): 221-225 (in Chinese). | |
41 | 乐晓斌, 高德平, 何明鉴. 压气机叶片疲劳可靠度及寿命的预测方法[J]. 航空动力学报, 1995, 10(2): 32-35, 92-93 (in Chinese). |
LE X B, GAO D P, HE M J. Prediction method of fatigue reliability and life of compressor blades[J]. Journal of Aerospace Power, 1995, 10(2): 32-35,92-93 (in Chinese). | |
42 | HOU N, WEN Z, YU Q, et al. Application of a combined high and low cycle fatigue life model on life prediction of SC blade[J]. International Journal of Fatigue, 2009, 31(4): 616-619. |
43 | PETERS J O, RITCHIE R O. Influence of foreign-object damage on crack initiation and early crack growth during high-cycle fatigue of Ti-6Al-4V[J]. Engineering Fracture Mechanics, 2000, 67(3): 193-207. |
44 | BYRNE J. Influence of LCF overloads on combined HCF/LCF crack growth[J]. International Journal of Fatigue, 2003, 25(9-11): 827-834. |
45 | 潘胜豪. 基于连续损伤力学压气机叶片疲劳行为与损伤机理研究[D]. 天津: 天津大学, 2021. |
PAN S H. Investigation of fatigue behavior and damage mechanism of compressor blade based on continuous damage mechanics[D]. Tianjin: Tianjin University, 2021 (in Chinese). | |
46 | PATIL S. CFD analysis of turbocharger compressor to study the effect of geometry change on surge and performance of compressor[J]. International Journal of Performability Engineering, 2018,14(1): 9-16 |
47 | 谢进祥. 轴流压缩机首级叶片疲劳断裂的原因分析[J]. 风机技术, 2007, 49(2): 64-70. |
XIE J X. The cause analysis of fatigue for the first stage blade of axial-flow compressor[J]. Compressor, Blower & Fan Technology, 2007, 49(2): 64-70 (in Chinese). | |
48 | 聂奥. 航空发动机叶片腐蚀点标注及恒力打磨技术研究[D]. 襄阳: 湖北文理学院, 2022. |
NIE A. Research on blade corrosion point marking and constant force grinding technology[D]. Xiangyang: Hubei University of Arts and Sciences 2022 (in Chinese). | |
49 | JAHANGIRI M R, FALLAH A A, GHIASIPOUR A. Cement kiln dust induced corrosion fatigue damage of gas turbine compressor blades—A failure analysis[J]. Materials & Design, 2014, 62: 288-295. |
50 | 刘国栋. PW4000系列发动机高压压气机叶片损伤形式的分析[J]. 装备制造技术, 2020(5): 161-163. |
LIU G D. PW4000 series engine HPC module blade/vane damage types statistics and analysis[J]. Equipment Manufacturing Technology, 2020(5): 161-163 (in Chinese). | |
51 | 张涛, 赵振华, 杜文军, 等. 风扇/压气机叶片外物损伤验证方法及疲劳强度预测研究[J]. 推进技术, 2023, 44(2): 246-251. |
ZHANG T, ZHAO Z H, DU W J, et al. Verification method of foreign object damage and fatigue strength prediction of fan/compressor blades[J]. Journal of Propulsion Technology, 2023, 44(2): 246-251 (in Chinese). | |
52 | ZHAO Z H, WANG L F, ZHANG J H, et al. Prediction of high-cycle fatigue strength in a Ti-17 alloy blade after foreign object damage[J]. Engineering Fracture Mechanics, 2021, 241: 107385. |
53 | 王凌峰, 许祥胜, 赵振华, 等. 外物损伤对不锈钢模拟叶片疲劳强度的影响研究[J]. 推进技术, 2021, 42(12): 2808-2817. |
WANG L F, XU X S, ZHAO Z H, et al. Effects of foreign object damage on fatigue strength of stainless steel simulated blades[J]. Journal of Propulsion Technology, 2021, 42(12): 2808-2817 (in Chinese). | |
54 | 罗渝川, 韩新营, 罗晓利. 2006—2015年间中国民航事故及事故征候的统计分析[J]. 中国民航飞行学院学报, 2018, 29(3): 21-24, 29. |
LUO Y C, HAN X Y, LUO X L. Statistic analysis based on accidents and incidents of China civil aviation during 2006-2015[J]. Journal of Civil Aviation Flight University of China, 2018, 29(3): 21-24, 29 (in Chinese). | |
55 | 张海兵, 张泰峰, 郭奇. 航空发动机压气机叶片损伤分析与监控对策[J]. 无损检测, 2021, 43(1): 15-18, 52. |
ZHANG H B, ZHANG T F, GUO Q. Damage analysis and monitoring measures of compressor blades of an aero engine[J]. Nondestructive Testing Technologying, 2021, 43(1): 15-18, 52 (in Chinese). | |
56 | 舒畅, 程铭, 许煜, 等. 航空发动机压气机叶片外物损伤规律研究[J]. 机械工程学报, 2019, 55(13): 87-94. |
SHU C, CHENG M, XU Y, et al. Study on foreign object damage regular pattern of aero engine compressor blades[J]. Journal of Mechanical Engineering, 2019, 55(13): 87-94 (in Chinese). | |
57 | 马兴坤, 张雄飞, 马超. 浅谈民航发动机高压压气机叶片维修管理方法[J]. 航空维修与工程, 2018(9): 85-86. |
MA X K, ZHANG X F, MA C. Discussion on maintenance management method of the engine high pressure compressor blade[J]. Aviation Maintenance & Engineering, 2018(9): 85-86 (in Chinese). | |
58 | 卓义民, 陈远航, 杨春利. 航空发动机叶片焊接修复技术的研究现状及展望[J]. 航空制造技术, 2021, 64(8): 22-28. |
ZHUO Y M, CHEN Y H, YANG C L. Research status and prospect of welding repair technology for aero-engine blades[J]. Aeronautical Manufacturing Technology, 2021, 64(8): 22-28 (in Chinese). | |
59 | 阮雪茜, 张露, 韩秀峰, 等. 钛合金叶片的激光沉积修复技术研究[J]. 应用激光, 2021, 41(3): 543-547. |
RUAN X Q, ZHANG L, HAN X F, et al. Research on laser deposition repair technology of titanium alloy blades[J]. Applied Laser, 2021, 41(3): 543-547 (in Chinese). | |
60 | 张铀, 杨秀恩, 李俊辰, 等. 航空发动机压气机叶片凸台再制造修复方法: CN110592520A[P]. 2019-12-20. |
ZHANG Y, YANG X E, LI J C, et al. Remanufacturing repairing method of blade boss of gas compressor of aircraft engine: CN110592520A[P]. 2019-12-20 (in Chinese). | |
61 | 邹葆华. 刍议航空发动机的腐蚀问题及控制措施[J]. 中国新技术新产品, 2014(3): 188. |
ZOU B H. Discussion on corrosion problems of aero-engine and its control measures[J]. China New Technologies and Products, 2014(3): 188 (in Chinese). | |
62 | 余肖飞, 敖良忠, 吴梓祺. 沿海地带航空发动机腐蚀研究[J]. 现代工业经济和信息化, 2021, 11(11): 179-182. |
YU X F, AO L Z, WU Z Q. Study on corrosion of aeroengine in coastal zone[J]. Modern Industrial Economy and Informationization, 2021, 11(11): 179-182 (in Chinese). | |
63 | 李文辉, 温学杰, 李秀红, 等. 整体叶盘抛磨技术研究现状及其发展趋势[J]. 航空制造技术, 2022, 65(17): 88-102. |
LI W H, WEN X J, LI X H, et al. Research status and development trend of blisk polishing technology[J]. Aeronautical Manufacturing Technology, 2022, 65(17): 88-102 (in Chinese). | |
64 | 贾雨超, 迟关心, 张昆, 等. 闭式整体叶盘成组电极高效电弧成形加工技术[J]. 航空学报, 2022, 43(4): 525605. |
JIA Y C, CHI G X, ZHANG K, et al. High-efficiency electrical arc machining of integral shrouded blisk using grouped electrode[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525605 (in Chinese). | |
65 | LEE J N, YEH H L, SHIE M J, et al. Improvement in the efficiency of the five-axis machining of aerospace blisks[J]. Science Progress, 2022, 105(4): 368504221128776. |
66 | 黄春峰. 现代航空发动机整体叶盘及其制造技术[J]. 航空制造技术, 2006, 49(4): 94-100. |
HUANG C F. Modern aeroengine integral blisk and its manufacturing technology[J]. Aeronautical Manufacturing Technology, 2006, 49(4): 94-100 (in Chinese). | |
67 | 柳万珠, 陈贵林, 梁忠效, 等. 压气机转子叶片类零件的制造与修复技术[J]. 航空制造技术, 2010, 53(22): 36-39. |
LIU W Z, CHEN G L, LIANG Z X, et al. Manufacturing and repair technology for compressor rotor blade[J]. Aeronautical Manufacturing Technology, 2010, 53(22): 36-39 (in Chinese). | |
68 | 孙明霞, 梁春华, 张世福. 激光技术在风扇/压气机整体叶盘结构修理中的应用[J]. 航空制造技术, 2013, 56(9): 62-65. |
SUN M X, LIANG C H, ZHANG S F. Application of laser repairing technology for fan/compressor blisk[J]. Aeronautical Manufacturing Technology, 2013, 56(9): 62-65 (in Chinese). | |
69 | 侯廷红, 何勇, 陈海生, 等. 压气机整体叶盘叶片损伤修复技术研究[J]. 航空维修与工程, 2019(4): 37-40. |
HOU T H, HE Y, CHEN H S, et al. Research on blade damage repair technology for compressor blisk[J]. Aviation Maintenance & Engineering, 2019(4): 37-40 (in Chinese). | |
70 | 李杰. 航空发动机整体叶盘维修解决方案[J]. 航空维修与工程, 2009(2): 25-26. |
LI J. DMLD, an advanced repair process for aero engine blisk[J]. Aviation Maintenance & Engineering, 2009(2): 25-26 (in Chinese). | |
71 | MATEO A. On the feasibility of BLISK produced by linear friction welding[J]. Revista De Metalurgia, 2014, 50(3): e023. |
72 | 姚希珍, 胡泽. 钛合金整体叶盘线性摩擦焊技术综述[J]. 航空制造技术, 2011, 54(16): 43-47. |
YAO X Z, HU Z. Linear friction welding technology for titanium alloy disc[J]. Aeronautical Manufacturing Technology, 2011, 54(16): 43-47 (in Chinese). | |
73 | MUKUNDHAN C, SIVARAJ P, BALASUBRAMANIAN V, et al. Microstructural features, tensile properties, and impact toughness of linear friction welded high-temperature alloy joints for blisk assembly applications[J]. Advances in Materials Science and Engineering, 2022, 2022: 2233443. |
74 | 黄艳松, 马俊文, 冯保东. 先进焊接技术在发动机整体叶盘修复中的应用[J]. 新技术新工艺, 2012(8): 78-81. |
HUANG Y S, MA J W, FENG B D. Application of advanced welding technology on repairing of aero engine blisks[J]. New Technology & New Process, 2012(8): 78-81 (in Chinese). | |
75 | KUMARI S, SATYANARAYANA D V V, SRINIVAS M. Failure analysis of gas turbine rotor blades[J]. Engineering Failure Analysis, 2014, 45: 234-244. |
76 | BALLAL D R, ZELINA J. Progress in aeroengine technology (1939: 2003)[J]. Journal of Aircraft, 2004, 41(1): 43-50. |
77 | 赵云松, 张迈, 郭小童, 等. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33. |
ZHAO Y S, ZHANG M, GUO X T, et al. Recent progress in service induced degradation of turbine blades of aeroengine due to overheating[J]. Journal of Materials Engineering, 2020, 48(9): 24-33 (in Chinese). | |
78 | 韩世进, 常城. 发动机高压涡轮叶片的氧化损伤分析[J]. 航空维修与工程, 2022(3): 26-28. |
HAN S J, CHANG C. Oxidation damage analysis of high-pressure turbine blades of engine[J]. Aviation Maintenance & Engineering, 2022(3): 26-28 (in Chinese). | |
79 | PADTURE N P, GELL M, JORDAN E H. Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296(5566): 280-284. |
80 | ZHU W, CAI M, YANG L, et al. The effect of morphology of thermally grown oxide on the stress field in a turbine blade with thermal barrier coatings[J]. Surface and Coatings Technology, 2015, 276: 160-167. |
81 | CLARKE D R, LEVI C G. Materials design for the next generation thermal barrier coatings[J]. Annual Review of Materials Research, 2003, 33: 383-417. |
82 | 杨晓军, 王瑛琦, 刘智刚. 航空发动机涡轮叶片损伤分析[J]. 机械工程与自动化, 2017(3): 203-205. |
YANG X J, WANG Y Q, LIU Z G. Analysis of damaged blades of aero-engine turbine[J]. Mechanical Engineering & Automation, 2017(3): 203-205 (in Chinese). | |
83 | 魏铮, 胡捷. 热障涂层失效机制和寿命预测研究概述[J]. 装备机械, 2013(4): 2-6. |
WEI Z, HU J. Summary of investigation on failure mechanism and lifetime prediction of thermal barrier coatings[J]. The Magazine on Equipment Machinery, 2013(4): 2-6 (in Chinese). | |
84 | MADHWAL M, JORDAN E H, GELL M. Failure mechanisms of dense vertically-cracked thermal barrier coatings[J]. Materials Science and Engineering: A, 2004, 384(1-2): 151-161. |
85 | 郭伟, 董丽虹, 王慧鹏, 等. 基于红外热像技术的涡轮叶片损伤评价研究进展[J]. 航空学报, 2016, 37(2): 429-436. |
GUO W, DONG L H, WANG H P, et al. Research progress of damage estimation for turbine blades based on infrared thermographic technology[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(2): 429-436 (in Chinese). | |
86 | 林杰威, 张俊红, 张桂昌, 等. 基于连续非线性损伤的航空发动机叶片疲劳研究[J]. 机械工程学报, 2010, 46(18): 66-70. |
LIN J W, ZHANG J H, ZHANG G C, et al. Study on fatigue damage of aero-engine blade based on non-linear continuum damage model[J]. Journal of Mechanical Engineering, 2010, 46(18): 66-70 (in Chinese). | |
87 | KIM C Y, CHOI S J. A study on failure rate prediction of aircraft gas turbine engine turbine blade[J]. Journal of the Korean Society for Aviation and Aeronautics, 2019, 27(4): 21-26. |
88 | CHABOCHE J L, GALLERNEAU F. An overview of the damage approach of durability modelling at elevated temperature[J]. Fatigue & Fracture of Engineering Materials & Structures, 2001, 24(6): 405-418. |
89 | GUO X T, ZHENG W W, XIAO C B, et al. Evaluation of microstructural degradation in a failed gas turbine blade due to overheating[J]. Engineering Failure Analysis, 2019, 103: 308-318. |
90 | CARTER T J. Common failures in gas turbine blades[J]. Engineering Failure Analysis, 2005, 12(2): 237-247. |
91 | BREMER C. Final report summary—Automated repair and overhaul system for aero turbine engine components (AROSATEC):502937[R]. Luxembourg: Publications Office of the European Union, 2006. |
92 | POLYANSKII S N, BUTAKOV S V, OLKOV I S,et al. Repair of turbine components by abrasive-jet machining[J]. Journal of Machinery Manufacture and Reliability, 2021, 50(1): 72-78. |
93 | BALASUBRAMANIAN T S, BALASUBRAMANIAN V, MUTHU MANICKAM M A. Fatigue crack growth behaviour of gas tungsten arc, electron beam and laser beam welded Ti-6Al-4V alloy[J]. Materials & Design, 2011, 32(8-9): 4509-4520. |
94 | NGORET J K, KOMMULA V P. Role of aluminide coating degradation on Inconel 713 LC used for compressor turbines (CT) of short-haul aircrafts[J]. MRS Advances, 2018, 3(38): 2281-2296. |
95 | VILAR R, ALMEIDA A. Repair and manufacturing of single crystal Ni-based superalloys components by laser powder deposition—A review[J]. Journal of Laser Applications, 2015, 27(S1): S17004. |
96 | YILMAZ O, GINDY N, GAO J. A repair and overhaul methodology for aeroengine components[J]. Robotics and Computer-Integrated Manufacturing, 2010, 26(2): 190-201. |
97 | WANG T, DING H P, TANG J, et al. Recent repair technology for aero-engine blades[J]. Recent Patents on Engineering, 2015, 9(2): 132-141. |
98 | BRAUNY P, HAMMERSCHMIDT M, MALIK M. Repair of air⁃cooled turbine vanes of high⁃performance aircraft engines⁃problems and experience[J]. Materials Science and Technology, 1985, 1(9): 719-727. |
99 | MIGLIETTI W, SUMMERSIDE I, HOEVEL S, et al. Repair process technology development and experience for W501F row 1 hot gas path blades[C]∥ Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. New York: ASME, 2010: 957-968. |
100 | ZHU Y Y, CHEN B, TANG H B, et al. Influence of heat treatments on microstructure and mechanical properties of laser additive manufacturing Ti-5Al-2Sn-2Zr-4Mo-4Cr titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(1): 36-46. |
101 | TANG Q H, ZHOU D, WANG Y L, et al. Laser cleaning of sulfide scale on compressor impeller blade[J]. Applied Surface Science, 2015, 355: 334-340. |
102 | ZHANG X C, LI W, ADKISON K M, et al. Damage reconstruction from tri-dexel data for laser-aided repairing of metallic components[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9): 3377-3390. |
103 | 李小强, 程准, 邱昊, 等. 镍基高温合金焊接修复技术的研究进展[J]. 材料导报, 2017, 31(S1): 541-545. |
LI X Q, CHENG Z, QIU H, et al. Research progress on welding repair technology of nickel-based superalloy[J]. Materials Reports, 2017, 31(S1): 541-545 (in Chinese). | |
104 | RITTINGHAUS S K, SCHMELZER J, RACKEL M W, et al. Direct energy deposition of TiAl for hybrid manufacturing and repair of turbine blades[J]. Materials, 2020, 13(19): 4392. |
105 | WU B H, WANG J, ZHANG Y, et al. Adaptive location of repaired blade for multi-axis milling[J]. Journal of Computational Design and Engineering, 2015, 2(4): 261-267. |
106 | KAIERLE S, OVERMEYER L, ALFRED I, et al. Single-crystal turbine blade tip repair by laser cladding and remelting[J]. CIRP Journal of Manufacturing Science and Technology, 2017, 19: 196-199. |
107 | NIE X F, HE W F, ZANG S L, et al. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts[J]. Surface and Coatings Technology, 2014, 253: 68-75. |
108 | ZHAO Y S, ZHANG M, GUO X T,et al. Recent progress in service induced degradation of turbine blades of aeroengines due to overheating[J].Journal of Materials Engineering, 2020, 48(9): 24-33. |
109 | DENKENA B, BOESS V, NESPOR D, et al. Engine blade regeneration: A literature review on common technologies in terms of machining[J]. The International Journal of Advanced Manufacturing Technology, 2015, 81(5): 917-924. |
110 | 张建平. 德国MTU公司民用航空发动机高压涡轮叶片维修技术[J]. 航空制造技术, 2004, 47(10): 70-71. |
ZHANG J P. Maintenance technology of high pressure turbine blades of civil aviation engine of MTU company in Germany[J]. Aeronautical Manufacturing Technology, 2004, 47(10): 70-71 (in Chinese). | |
111 | LESYK D A, MARTINEZ S, PEDASH O O, et al. Nickel superalloy turbine blade parts printed by laser powder bed fusion: Thermo-mechanical post-processing for enhanced surface integrity and precipitation strengthening[J]. Journal of Materials Engineering and Performance, 2022, 31(8): 6283-6299. |
112 | 韩晓东, 杨秀娟. 航空发动机涡轮叶片修复中的裂纹控制[J]. 科技创新与应用, 2017(36): 166-167. |
HAN X D, YANG X J. Crack control in aero-engine turbine blade repair[J]. Technology Innovation and Application, 2017(36): 166-167 (in Chinese). | |
113 | 贾宜委, 王鹤峰, 王宇迪, 等. 航空发动机涡轮叶片热障涂层研究现状[J]. 表面技术, 2023, 52(11): 139-154. |
JIA Y W, WANG H F, WANG Y D, et al. Current status of research on thermal barrier coating of aero-engine turbine blades[J]. Surface Technology, 2023, 52(11):139-154 (in Chinese). | |
114 | 张欢. 航空发动机叶片原位磨削机械臂设计及关键技术研究[D]. 南京: 南京航空航天大学, 2021. |
ZHANG H. Design and key technology research of in-situ grinding robotic arm for aero-engine blades[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021 (in Chinese). | |
115 | BUCKINGHAM R, CHITRAKARAN V, CONKIE R, et al. Snake-arm robots: A new approach to aircraft assembly: 2007-01-3870[R]. Warrendale: SAE International, 2007. |
116 | 吴娜. 缺口型硬物损伤对叶片强度及气动性能的影响研究[D]. 南京: 南京航空航天大学, 2019. |
WU N. Research on influence of notched foreign object damage on strength and aerodynamic performance of blade[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
117 | 孙永, 曹平亚, 刘乃刚. 视频内窥设备辅助下的航空发动机压气机转子叶片原位修复技术研究[J]. 中国科技纵横, 2012(12): 84-85. |
SUN Y, CAO P Y, LIU N G. Research on in situ repair technology of aero-engine compressor rotor blade with the assistance of video endoscope equipment[J]. China’s Science and Technology, 2012(12): 84-85 (in Chinese). | |
118 | 姜春英, 李清野, 崔峰, 等. 一种新型航空发动机气动打磨仪数值模拟与试验研究[J]. 机床与液压, 2019, 47(22): 41-46. |
JIANG C Y, LI Q Y, CUI F, et al. Numerical simulation and experimental study of a new type of aero engine air grinding instrument[J]. Machine Tool & Hydraulics, 2019, 47(22): 41-46 (in Chinese). | |
119 | 李清野. 航空发动机气动打磨仪结构设计与优化[D]. 沈阳: 沈阳航空航天大学, 2019. |
LI Q Y. Structural design and optimization of aero-engine pneumatic grinding instrument[D].Shenyang: Shenyang Aerospace University, 2019 (in Chinese). | |
120 | DONG X, PALMER D, AXINTE D, et al. In-situ repair/maintenance with a continuum robotic machine tool in confined space[J]. Journal of Manufacturing Processes, 2019, 38: 313-318. |
121 | WANG M F, PALMER D, DONG X, et al. Design and development of a slender dual-structure continuum robot for in-situ aeroengine repair[C]∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 5648-5653. |
122 | WANG M F, DONG X, BA W M, et al. Design, modelling and validation of a novel extra slender continuum robot for in situ inspection and repair in aeroengine[J]. Robotics and Computer-Integrated Manufacturing, 2021, 67: 102054. |
123 | ALATORRE D, NASSER B, RABANI A, et al. Robotic boreblending: The future of in-situ gas turbine repair[C]∥ 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2018: 1401-1406. |
124 | ALATORRE D, NASSER B, RABANI A, et al. Teleoperated, in situ repair of an aeroengine: Overcoming the internet latency hurdle[J]. IEEE Robotics & Automation Magazine, 2019, 26(1): 10-20. |
125 | CHA D, DIAZ O G, LIAO Z, et al. Development of a novel system for in situ repair of aeroengine airfoil via pulsed laser ablation[J]. Journal of Manufacturing Systems, 2020, 55: 126-131. |
126 | JONATHAN G D. Laser process optimisation for in situ repair of aero-engine components[D]. Nottingham: University of Nottingham, 2017. |
127 | 赵波, 姜燕, 别文博. 超声滚压技术在表面强化中的研究与应用进展[J]. 航空学报, 2020, 41(10): 023685. |
ZHAO B, JIANG Y, BIE W B. Ultrasonic rolling technology in surface strengthening: Progress in research and applications[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 023685 (in Chinese). | |
128 | 王燕礼, 朱有利, 杨嘉勤. 滚压强化技术及在航空领域研究应用进展[J]. 航空制造技术, 2018, 61(5): 75-83. |
WANG Y L, ZHU Y L, YANG J Q. Rolling reinforcement technology and its research application progress in aviation field[J]. Aeronautical Manufacturing Technology, 2018, 61(5): 75-83 (in Chinese). | |
129 | BÄCKER V, KLOCKE F, WEGNER H, et al. Analysis of the deep rolling process on turbine blades using the FEM/BEM-coupling[J]. IOP Conference Series: Materials Science and Engineering, 2010, 10: 012134. |
130 | PREVÉY P, HORNBACH D, JACOBS T L, et al. Improved damage tolerance in titanium alloy fan blades with low plasticity burnishing[C]∥ 2002 International Surface Engineering Conference, 2002. |
131 | 许娟, 李鹏涛. 一种用于叶片原位维修的维修装置及操作方法: CN114905284A[P]. 2022-08-16. |
XU J, LI P T. Maintenance device for blade in-situ maintenance and operation method: CN114905284A[P]. 2022-08-16 (in Chinese). | |
132 | 胡钰昊, 田伟, 刘砚飞, 等. 模拟打伤/抛修缺口对TC17钛合金叶片振动疲劳性能的影响[J]. 航空制造技术, 2021, 64(6): 96-101. |
HU Y H, TIAN W, LIU Y F, et al. Effect of damaged and repaired notch on vibration fatigue property of TC17 titanium alloy simulated blades[J]. Aeronautical Manufacturing Technology, 2021, 64(6): 96-101 (in Chinese). | |
133 | 贾旭, 胡绪腾, 朱自佳, 等. FOD缺口型损伤对TC4疲劳极限强度的影响[J]. 航空动力学报, 2018, 33(7): 1584-1594. |
JIA X, HU X T, ZHU Z J, et al. Effect of FOD notch-type damage on fatigue limit strength of TC4[J]. Journal of Aerospace Power, 2018, 33(7): 1584-1594 (in Chinese). | |
134 | 胡绪腾, 贾旭, 朱自佳, 等. 凹坑型硬物损伤对TC4材料疲劳强度的影响[J]. 航空动力学报, 2018, 33(4): 969-979. |
HU X T, JIA X, ZHU Z J, et al. Effect of dent-type foreign object damage on fatigue strength of TC4 material[J]. Journal of Aerospace Power, 2018, 33(4): 969-979 (in Chinese). | |
135 | NEUBER H. Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law[J]. Journal of Applied Mechanics, 1961, 28(4): 544-550. |
136 | INCE A. A mean stress correction model for tensile and compressive mean stress fatigue loadings[J]. Fatigue & Fracture of Engineering Materials & Structures, 2017, 40(6): 939-948. |
137 | YU M, DUQUESNAY D, TOPPER T. Notch fatigue behaviour of SAE1045 steel[J]. International Journal of Fatigue, 1988, 10(2): 109-116. |
138 | YVONNE O S. On the high- and low-cycle fatigue of aero-engine compressor blades following foreign object damage[D]. Oxford: University of Oxford, 2004. |
139 | 郑楚鸿. 高周疲劳设计方法: 应力场强法的研究[D]. 北京: 清华大学, 1984. |
ZHENG C H. High cycle fatigue design method: Research on stress field strength method[D]. Beijing: Tsinghua University, 1984 (in Chinese). | |
140 | 姚卫星, 顾怡. 论疲劳缺口减缩系数Kf [J]. 工程力学, 1995, 12(3): 91-96. |
YAO W X, GU Y. On the fatigue notch factor Kf [J]. Engineering Mechanics, 1995, 12(3): 91-96 (in Chinese). | |
141 | 赵旭升. 典型服役破损叶片修复自适应加工关键技术研究[D]. 武汉: 华中科技大学, 2019. |
ZHAO X S. Research on key techniques of adaptive machining for repair of typical damaged blade[D]. Wuhan: Huazhong University of Science and Technology, 2019 (in Chinese). | |
142 | 赵旭升, 杨建中, 陈吉红, 等. 服役破损叶片的曲面重构及刀路生成方法[J]. 中国机械工程, 2019, 30(24): 2906-2915, 2924. |
ZHAO X S, YANG J Z, CHEN J H, et al. Surface reconstruction and tool path generation method for remanufacturing of damaged blades[J]. China Mechanical Engineering, 2019, 30(24): 2906-2915, 2924 (in Chinese). | |
143 | 吴志新, 昂给拉玛, 张云, 等. 航空发动机涡轮叶片叶尖损伤修复自适应加工技术研究与应用[J]. 制造技术与机床, 2021(7): 93-97. |
WU Z X, ANG G, ZHANG Y, et al. Research and application of adaptive machining technology for repairing blade tip damage of aero-engine turbine blades[J]. Manufacturing Technology & Machine Tool, 2021(7): 93-97 (in Chinese). | |
144 | 叶晓华. 航空叶片叶尖自适应修复软件开发[D]. 武汉: 华中科技大学, 2016. |
YE X H. Development of software for aeronautic blade tip adaptive repairation[D].Wuhan: Huazhong University of Science and Technology, 2016 (in Chinese). | |
145 | 陈裕芹. 反求工程在发动机叶片检测中的应用研究[D]. 广州: 广东工业大学, 2011. |
CHEN Y Q. The research of the use of reverse engineering in engine blade inspection[D].Guangzhou: Guangdong University of Technology, 2011 (in Chinese). | |
146 | 陆晶文. 反求工程在航空发动机叶片维修中的应用探索[J]. 科技信息, 2013(9): 115. |
LU J W. Application of reverse engineering in aero-engine blade maintenance[J]. Science & Technology Information, 2013(9): 115 (in Chinese). | |
147 | 陈振林, 陈志同, 朱正清, 等. 基于逆向工程的航空发动机叶片再制造修复方法研究[J]. 航空制造技术, 2020, 63(S2): 80-86, 93. |
CHEN Z L, CHEN Z T, ZHU Z Q, et al. Research on remanufacturing and repairing method of aero-engine blades based on reverse engineering[J]. Aeronautical Manufacturing Technology, 2020, 63(S2): 80-86, 93 (in Chinese). | |
148 | 聂兆伟, 熊丹丹. 航空发动机叶片自适应修复目标曲面重构[J]. 计算机集成制造系统, 2019, 25(1): 53-60. |
NIE Z W, XIONG D D. Target surface research of aero-engine blade adaptive repairing driven by image model[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 53-60 (in Chinese). |
[1] | 高同州, 贺小帆, 王晓雷, 李紫光, 朱振涛, 詹志新. 基于CDM理论与SVM模型的2014-T6铝合金疲劳寿命预测[J]. 航空学报, 2024, 45(7): 228952-228952. |
[2] | 尹泽勇, 李概奇, 石建成, 银越千. 先进通用核心机派生发展的理念、方法及实践[J]. 航空学报, 2024, 45(7): 29713-029713. |
[3] | 曹志鹏, 王永明, 赵龙波, 关朝斌, 牛潇, 陈晨. 复合掠弯轴流增压设计技术[J]. 航空学报, 2024, 45(5): 529676-529676. |
[4] | 黄维娜, 黎方娟, 祁宏斌. 航空发动机数字工程初步研究与发展思考[J]. 航空学报, 2024, 45(5): 529693-529693. |
[5] | 齐国宁, 吴宝海, 符江锋. 高速高压燃油齿轮泵典型卸荷槽对比分析[J]. 航空学报, 2024, 45(5): 529666-529666. |
[6] | 黄领才. 纤维增强聚合物复合材料无损检测方法进展[J]. 航空学报, 2024, 45(5): 529697-529697. |
[7] | 胡明辉, 高金吉, 江志农, 王维民, 邹利民, 周涛, 凡云峰, 王越, 冯家欣, 李晨阳. 航空发动机振动监测与故障诊断技术研究进展[J]. 航空学报, 2024, 45(4): 630194-630194. |
[8] | 陈立芳, 孙亚冰, 周书华, 高强, 乔保栋, 李栋. 基于真实数据反演的风扇转子本机平衡方法[J]. 航空学报, 2024, 45(4): 628321-628321. |
[9] | 马瑞贤, 王鑫, 王开明, 李斌, 廖明夫, 王四季. 航空发动机篦齿⁃橡胶涂层机匣碰摩实验[J]. 航空学报, 2024, 45(4): 628350-628350. |
[10] | 吴志渊, 赵林川, 颜格, 胡海峰, 杨志勃, 张文明. 转轴-轮盘-裂纹叶片耦合系统的叶尖振动特性[J]. 航空学报, 2024, 45(4): 628346-628346. |
[11] | 肖袁, 冯坤, 胡明辉, 江志农. 航空发动机转子非稳态振动分量提取方法[J]. 航空学报, 2024, 45(3): 228158-228158. |
[12] | 张超, 曹勇, 赵振强, 张海洋, 孙建波, 王志华, 蔚夺魁. 树脂基复合材料在民用航空发动机中的应用与关键技术研究进展[J]. 航空学报, 2024, 45(2): 28556-028556. |
[13] | 李天晴, 王维民, 张旭龙, 王树慧, 付振宇. 基于叶尖定时的转子叶片轴向位移辨识方法[J]. 航空学报, 2024, 45(2): 228682-228682. |
[14] | 束静, 廖文和, 郑侃, 董松, 孙连军. 旋转超声加工碳纤维复合材料研究现状与展望[J]. 航空学报, 2024, 45(13): 628939-628939. |
[15] | 姜卓群, 黄盛, 王占学. 2D编织C/SiC孔边致密化结构多尺度混合模型与拉伸性能[J]. 航空学报, 2024, 45(13): 628713-628713. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学