1 |
HARUSSANI M M, SAPUAN S M, NADEEM G, et al. Recent applications of carbon-based composites in defence industry: A review[J]. Defence Technology, 2022, 18(8): 1281-1300.
|
2 |
WANG Q, SUN LING NA, HU CHANG WEN, et al. Research of novel functional stealthy nanomaterials[J]. Advanced Materials Research, 2012, 534: 73-77.
|
3 |
KUZHIR P, VOLYNETS N, MAKSIMENKO S, et al. Multilayered graphene in Kα-band: Nanoscale coating for aerospace applications[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(8): 5864-5867.
|
4 |
杨喜, 曹敏, 简煜, 等. 多孔木炭/Fe3O4复合吸波材料的制备与性能[J]. 复合材料学报, 2022, 39(10): 4590-4601.
|
|
YANG X, CAO M, JIAN Y, et al. Preparation and microwave absorption properties of porous charcoal/Fe3O4 composites[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4590-4601 (in Chinese).
|
5 |
CAO M S, HAN C, WANG X X, et al. Graphene nanohybrids: excellent electromagnetic properties for the absorbing and shielding of electromagnetic waves[J]. Journal of Materials Chemistry C, 2018, 6(17): 4586-4602.
|
6 |
ZENG X J, YANG B, YANG H Z, et al. Solvothermal synthesis and good microwave absorbing properties for magnetic porous-Fe3O4/graphene nanocomposites[J]. AIP Advances, 2016, 7(5): 056605.
|
7 |
WANG H S, SHI P P, RUI M, et al. The green synthesis rGO/Fe3O4/PANI nanocomposites for enhanced electromagnetic waves absorption[J]. Progress in Organic Coatings, 2020, 139: 105476.
|
8 |
李国显, 王涛, 薛海荣, 等. 石墨烯/Fe3O4复合材料的制备及电磁波吸收性能[J]. 航空学报, 2011, 32(9): 1732-1739.
|
|
LI G X, WANG T, XUE H R, et al. Synthesis of graphene/Fe3O4 composite materials and their electromagnetic wave absorption properties[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1732-1739 (in Chinese).
|
9 |
YANG Y N, XIA L, ZHANG T, et al. Fe3O4@LAS/RGO composites with a multiple transmission-absorption mechanism and enhanced electromagnetic wave absorption performance[J]. Chemical Engineering Journal, 2018, 352: 510-518.
|
10 |
LIU Z C, XIANG Z, DENG B W, et al. Rational design of hierarchical porous Fe3O4/rGO composites with lightweight and high-efficiency microwave absorption[J]. Composites Communications, 2020, 22: 100492.
|
11 |
LI J C, ZHAO X Y, WU W J, et al. Bubble-templated rGO-graphene nanoplatelet foams encapsulated in silicon rubber for electromagnetic interference shielding and high thermal conductivity[J]. Chemical Engineering Journal, 2021, 415: 129054.
|
12 |
XIANG Z, SONG Y M, XIONG J, et al. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks[J]. Carbon, 2019, 142: 20-31.
|
13 |
谢文瀚, 耿浩然, 柳扬, 等. MoS2/生物质碳复合材料的制备与吸波性能[J]. 复合材料学报, 2022, 39(5): 2238-2248.
|
|
XIE W H, GENG H R, LIU Y, et al. Preparation and microwave absorbing properties of MoS2/biomass carbon composite[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2238-2248 (in Chinese).
|
14 |
马志军, 莽昌烨, 翁兴媛, 等. Zn还原氧化石墨烯(RGO)和ZnO/RGO自组装复合材料的电磁响应行为[J]. 复合材料学报, 2019, 36(7): 1776-1786.
|
|
MA Z J, MANG C Y, WENG X Y, et al. Electromagnetic response behavior of Zn reduced graphene oxide(RGO)and ZnO/RGO self-assembled composites[J]. Acta Materiae Compositae Sinica, 2019, 36(7): 1776-1786 (in Chinese).
|
15 |
XIANG J, LI J L, ZHANG X H, et al. Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers[J]. Journal of Materials Chemistry A, 2014, 2(40): 16905-16914.
|
16 |
LIN Y, DAI J J, YANG H B, et al. Graphene multilayered sheets assembled by porous Bi2Fe4O9 microspheres and the excellent electromagnetic wave absorption properties[J]. Chemical Engineering Journal, 2018, 334: 1740-1748.
|
17 |
ZHAO X X, HUANG Y, LIU X D, et al. Core-shell CoFe2O4@C nanoparticles coupled with rGO for strong wideband microwave absorption[J]. Journal of Colloid and Interface Science, 2022, 607: 192-202.
|
18 |
MAGISETTY R, RAJ A B, DATAR S, et al. Nanocomposite engineered carbon fabric-mat as a passive metamaterial for stealth application[J]. Journal of Alloys and Compounds, 2020, 848: 155771.
|
19 |
TAO J Q, ZHOU J T, YAO Z J, et al. Multi-shell hollow porous carbon nanoparticles with excellent microwave absorption properties[J]. Carbon, 2021, 172: 542-555.
|
20 |
DI X C, WANG Y, LU Z, et al. Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption[J]. Carbon, 2021, 179: 566-578.
|
21 |
王跃毅, 鄢定祥, 李忠明. 碳纳米管/聚酰亚胺泡沫的制备及其吸波性能[J]. 航空学报, 2022, 43(7): 425531.
|
|
WANG Y Y, YAN D X, LI Z M. Preparation of carbon nanotubes/polyimide foam and its microwave absorption properties[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(7): 425531 (in Chinese).
|
22 |
CAO M S, SHU J C, WANG X X, et al. Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency[J]. Annalen der Physik, 2019, 531(4): 1800390.
|
23 |
ZHANG Y L, WANG X X, CAO M S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption[J]. Nano Research, 2018, 11(3): 1426-1436.
|
24 |
LIU P B, GAO S, WANG Y, et al. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials[J]. Chemical Engineering Journal, 2020, 381: 122653.
|
25 |
胡正浪, 吴海华, 杨增辉, 等. 石墨烯-铁镍合金-聚乳酸复合材料的制备及其吸波性能[J]. 复合材料学报, 2022, 39(7): 3303-3316.
|
|
HU Z L, WU H H, YANG Z H, et al. Preparation of graphene-iron-nickel alloy-polylactic acid composites and their microwave absorption properties[J]. Acta Materiae Compositae Sinica, 2022, 39(7): 3303-3316 (in Chinese).
|
26 |
ZHANG M, QIAN X, ZENG Q W, et al. Hollow microspheres of polypyrrole/magnetite/carbon nanotubes by spray-dry as an electromagnetic synergistic microwave absorber[J]. Carbon, 2021, 175: 499-508.
|
27 |
ZHANG Z W, CAI Z H, WANG Z Y, et al. A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials[J]. Nano-Micro Letters, 2021, 13(1): 1-29.
|
28 |
TANG M, ZHANG J Y, BI S, et al. Ultrathin topological insulator absorber: Unique dielectric behavior of Bi2Te3 nanosheets based on conducting surface states[J]. ACS Applied Materials & Interfaces, 2019, 11(36): 33285-33291.
|
29 |
SUN X, HE J P, LI G X, et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties[J]. Journal of Materials Chemistry C, 2013, 1(4): 765-777.
|
30 |
WU J M, YE Z M, LIU W X, et al. The effect of GO loading on electromagnetic wave absorption properties of Fe3O4/reduced graphene oxide hybrids[J]. Ceramics International, 2017, 43(16): 13146-13153.
|
31 |
LI X H, YI H B, ZHANG J W, et al. Fe3O4-graphene hybrids: nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range[J]. Journal of Nanoparticle Research, 2013, 15(3): 1-11.
|
32 |
WANG Y P, PENG Z, JIANG W. Size-controllable synthesis of Fe3O4 nanospheres decorated graphene for electromagnetic wave absorber[J]. Journal of Materials Science: Materials in Electronics, 2016, 27(6): 6010-6019.
|
33 |
LIU X D, HUANG Y, DING L, et al. Synthesis of covalently bonded reduced graphene oxide-Fe3O4 nanocomposites for efficient electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 2021, 72: 93-103.
|
34 |
YIN Y C, ZENG M, LIU J, et al. Enhanced high-frequency absorption of anisotropic Fe3O4/graphene nanocomposites[J]. Scientific Reports, 2016, 6(1): 1-10.
|
35 |
ZHENG J, LV H L, LIN X H, et al. Enhanced microwave electromagnetic properties of Fe3O4/graphene nanosheet composites[J]. Journal of Alloys and Compounds, 2014, 589: 174-181.
|
36 |
LIU X D, ZHAO X X, YAN J, et al. Enhanced electromagnetic wave absorption performance of core-shell Fe3O4@poly (3, 4-ethylenedioxythiophene) microspheres/reduced graphene oxide composite[J]. Carbon, 2021, 178: 273-284.
|
37 |
DING Y, ZHANG L, LIAO Q L, et al. Electromagnetic wave absorption in reduced graphene oxide functionalized with Fe3O4/Fe nanorings[J]. Nano Research, 2016, 9(7): 2018-2025.
|
38 |
ZHANG H X, JIA Z R, FENG A L, et al. In situ deposition of pitaya-like Fe3O4@C magnetic microspheres on reduced graphene oxide nanosheets for electromagnetic wave absorber[J]. Composites Part B: Engineering, 2020, 199: 108261.
|
39 |
LIU X D, HUANG Y, YAN J, et al. Covalently bonded Fe3O4@SiO2-reduced graphene oxide nanocomposites as high-efficiency electromagnetic wave absorbers[J]. Ceramics International, 2020, 46: 5175-5184.
|
40 |
YANG C, DAI S L, ZHANG X Y, et al. Electromagnetic wave absorption property of graphene with Fe3O4 nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(2): 1483-1490.
|
41 |
SUN D P, ZOU Q, WANG Y P, et al. Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption[J]. Nanoscale, 2014, 6(12): 6557-6562.
|
42 |
康越, 原博, 马天, 等. 基于石墨烯的电磁波损耗材料研究进展[J]. 无机材料学报, 2018, 33(12): 1259-1273.
|
|
KANG Y, YUAN B, MA T, et al. Development of microwave absorbing materials based on graphene[J]. Journal of Inorganic Materials, 2018, 33(12): 1259-1273 (in Chinese).
|