宋东彬1, 闫炬壮1, 杨文将1,2(), 白明亮1, 刘汝婧3, 王少鹏1, 刘宇1, 田爱梅1
收稿日期:
2022-05-19
修回日期:
2022-06-02
接受日期:
2022-07-04
出版日期:
2023-05-15
发布日期:
2022-07-08
通讯作者:
杨文将
E-mail:yangwjbuaa@buaa.edu.cn
基金资助:
Dongbin SONG1, Juzhuang YAN1, Wenjiang YANG1,2(), Mingliang BAI1, Rujing LIU3, Shaopeng WANG1, Yu LIU1, Aimei TIAN1
Received:
2022-05-19
Revised:
2022-06-02
Accepted:
2022-07-04
Online:
2023-05-15
Published:
2022-07-08
Contact:
Wenjiang YANG
E-mail:yangwjbuaa@buaa.edu.cn
Supported by:
摘要:
超导电机因体积小、功率密度高和效率高等优势,在航空电推进中展现出重大的应用前景。对比分析了纯电力超导电动系统和混合动力超导电动系统的方案特点,突出超导电机对于大功率航空电推进的重要性。针对航空电推进超导电动系统对电动机和发电机的不同需求,对过去研究的高温超导样机的运行原理及结构拓扑进行归类综述,并总结分析了各自利弊。在此基础上,从超导技术、电枢绕组技术、转子技术、低温技术和绝缘技术这5方面对超导电机本体关键技术分别进行回顾总结。最后,梳理了当前超导电机在航空电推进中应用的研究进展,并对未来超导电动航空发展进行了展望。
中图分类号:
宋东彬, 闫炬壮, 杨文将, 白明亮, 刘汝婧, 王少鹏, 刘宇, 田爱梅. 面向电动航空的高温超导电机技术研究发展[J]. 航空学报, 2023, 44(9): 27469-027469.
Dongbin SONG, Juzhuang YAN, Wenjiang YANG, Mingliang BAI, Rujing LIU, Shaopeng WANG, Yu LIU, Aimei TIAN. Technology development of high temperature superconducting machine for electric aviation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 27469-027469.
表 1
不同类型超导电动机/发电机的技术特点汇总
超导电机类型 | 结构特点 | 优点 | 缺点 | 技术成熟度 | ||
---|---|---|---|---|---|---|
超导电动机 | 径向间隙超导同步电动机 | 转子半超导 | 静置的铜电枢绕组,旋转的超导励磁绕组 | 提升气隙磁密,进而提高电机功率密度 | 滑环电刷磨损,超导引线漏热,转轴动密封以及转矩传递漏热,严重限制工作转速 | 已应用在混合电动飞机样机中 |
第1类定子半超导 | 旋转的铜电枢绕组,静置的超导励磁绕组 | 大幅降低了超导冷却系统复杂程度 | 滑环电刷磨损严重,铜损耗增大 | 实验室研制阶段 | ||
第2类定子半超导 | 静置的超导电枢绕组,旋转的永磁励磁体 | 高载流密度,低温系统结构简单,无需考虑低温动密封 | 电枢产生交流损耗对低温冷却要求极高,限制工作转速 | 实验室研制阶段 | ||
全超导 | 静置的超导电枢绕组,旋转的超导励磁绕组 | 高载流密度,大气隙磁密,小型化、轻质化 | 包含以上半超导电机所有缺点 | 实验室研制阶段 | ||
轴向间隙超导同步电动机 | 整体结构扁平,转子为盘式结构 | 可以通过模块化设计增大电机容量 | 边缘离心力较大,受滑环电刷限制,工作转速不高 | 实验室研制阶段 | ||
超导异步电动机 | 转子采用超导导条与端环实现自短路结构 | 调速能力强,输出转矩高 | 低温旋转动密封受限,超导-正常-超导的转变过程 | 实验室研制阶段 | ||
超导发电机 | 轴-径向间隙超导同步发电机 | 在转子端部增加轴向超导励磁结构 | 无低温旋转动密封问题、增大功率密度、可以高速工作 | 电机整体冷却结构更加复杂 | 实验室研制阶段 | |
超导单极发电机 | 静置的超导励磁绕组,常温实心整体转子 | 高转速、高功率密度,超导磁体不受离心力 | 漏磁较为严重,需不断优化 | 实验室研制阶段 | ||
超导爪极发电机 | 静置的超导励磁绕组同极磁爪转子 | 定子铁芯结构紧凑 | 转子结构复杂,会产生力学和电磁不稳定性 | 实验室研制阶段 | ||
超导磁通切换发电机 | 励磁绕组与电枢绕组均布置在定子槽内 | 转子结构简单,利于高转速工作 | 槽满率较低、电机体积大,低温旋转动密封问题 | 实验室研制阶段 | ||
超导磁齿轮发电机 | 磁极代替齿轮使内外转子无接触传递扭矩 | 降低噪声、受离心力较小、转矩密度可控 | 电机体积和重量大,运行效率低 | 实验室研制阶段 |
表 2
典型超导电动机/发电机的性能参数汇总
超导电机类型 | 国家 | 年份 | 容量 /kW | 转速 /(r·min-1) | 端电压 /V | 额定电流 /A | 频率 /Hz | 超导材料 | 冷却方式 | 工作温度 /K | 效率 /% | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
超 导 电 动 机 | 径向 间隙超导同步电动 机 | 转子 半超导 | 美国 | 2008 | 36 500 | 120 | 7 200 | 1 400 | 60 | Bi2223/Ag | 气氦 | 30 | 97.5 |
德国 | 2010 | 4 000 | 120 | 6 600 | 357 | 60 | Bi2223/Ag | 气氦 | 25 | 94.6 | |||
日本 | 2014 | 3 000 | 160 | 1 000 | 200 | 80 | Bi2223/Ag | 气氦 | 30 | 98 | |||
韩国 | 2016 | 5 000 | 213 | 6 600 | 460 | 10.6 | GdBCO | 气氖 | <30 | 98 | |||
英国 | 2010 | 100 | 3 000 | 300 | Bi2223/Ag | 过冷液氮 | <77 | ||||||
欧盟 | 2020 | 3 600 | 15 | 710 | 280 | GdBCO | 制冷机 | <25 | 92 | ||||
俄罗斯 | 2014 | 200 | 1 500 | 450 | 165 | 75 | YBCO | 过冷液氮 | 65~77 | 96.3 | |||
俄罗斯 | 2017 | 1 000 | 600 | 690 | 500 | 50 | YBCO | 过冷液氮 | 65~77 | >97 | |||
中国 | 2021 | 300 | 3 000 | 50 | GdBCO | 气氦 | 30 | ||||||
中国 | 2020 | 500 | 1 500 | 550 | 75 | YBCO | 液氮 | 77 | 96.33 | ||||
第1类定 子半超导 | 法国 | 2010 | 25 | 750 | 230 | 40 | 50 | YBCO | 液氦 | 25 | |||
第2类定子半超导 | 中国 | 2012 | 400 | 250 | 690 | 20.8 | YBCO | 过冷液氮 | 70 | 93.5 | |||
中国 | 2014 | 2.5 | 300 | 41.7 | 20 | 10 | Bi2223/Ag | 液氮 | 82 | ||||
全超导 | 英国 | 2008 | 8.4 | 1 500 | 115 | 35 | 75 | YBCO | 液氮 | 77 | 94.5 | ||
日本 | 2021 | 1 | 625 | 25 | 100 | 10.4 | YBCO | 过冷液氮 | 65~77 | ||||
轴向间隙超导同步电动机 | 日本 | 2006 | 400 | 250 | 618 | 16.7 | Bi2223/Ag | 过冷液氮 | 66~70 | ||||
超导异步电动机 | 日本 | 2020 | 50 | 1 500 | 400 | 50 | Bi2223/Ag | 液氮 | 77 | 94 | |||
超 导 发 电 机 | 超导单极发电机 | 美国 | 2008 | 1300 | 10 500 | 266 | 1 460 | 525 | Bi2223/Ag | 制冷机 | 30 | 97 | |
中国 | 2018 | 30 | 10 200 | 510 | 32 | 510 | YBCO | 过冷液氮 | 65~77 | ||||
超导爪极发电机 | 俄罗斯 | 2016 | 21.7 | 9 000 | 99 | 125 | 450 | YBCO | 液氮 | 77 | |||
超导磁通切换发电机 | 中国 | 2018 | 6 | 2 000 | 100 | 100 | Bi2223/Ag | 液氮 | 77 |
1 | WAHLS R. N+3 technologies and concepts[R]. Washington, D.C.: NASA Ames Research Center, 2010. |
2 | HIGH L G O A R. Flightpath 2050: Europe’s vision for aviation, maintaining global leadership & serving society’s needs[R]. High Level Group on Aviation Research, 2011. |
3 | AIR T A G. Waypoint 2050: Balancing growth in connectivity with a comprehensive global air transport response to the climate emergency [R]. Air Transport Action Group, 2020. |
4 | FEDDERSEN M. AC loss in MgB2-based fully superconducting electric machines[D]. Champaign: University of Illinois at Urbana-Champaign, 2017. |
5 | 赵军, 唐弋棣. 大涵道比民用涡扇发动机总体性能方案研究[C]∥第五届空天动力联合会议暨中国航天第三专业信息网第41届技术交流会, 2020: 157-168. |
ZHAO J, TANG Y D. Study on overall performance scheme of high bypass ratio civil turbofan engine [C]∥The 5th Joint Conference on Aerospace Power and the 41st Technical Exchange of China Third Aerospace Information Network, 2020:157-168. | |
6 | LUONGO C A, MASSON P J, NAM T, et al. Next generation more-electric aircraft: A potential application for HTS superconductors[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1055-1068. |
7 | 李开省. 电动飞机核心技术研究综述[J]. 航空科学技术, 2019, 30(11): 8-17. |
LI K S. Summary of research on core technology of electric aircraft[J]. Aeronautical Science & Technology, 2019, 30(11): 8-17 (in Chinese). | |
8 | 孔祥浩, 张卓然, 陆嘉伟, 等. 分布式电推进飞机电力系统研究综述[J]. 航空学报, 2018, 39(1): 021651. |
KONG X H, ZHANG Z R, LU J W, et al. Review of electric power system of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 021651 (in Chinese). | |
9 | 黄俊, 杨凤田. 新能源电动飞机发展与挑战[J]. 航空学报, 2016, 37(1): 57-68. |
HUANG J, YANG F T. Development and challenges of electric aircraft with new energies[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1): 57-68 (in Chinese). | |
10 | 胡雨. 通用飞机油电混合动力系统设计与优化[D]. 沈阳: 沈阳航空航天大学, 2014. |
HU Y. Design and optimization of a general aircraft’s hybrid electric propulsion system[D]. Shenyang: Shenyang Aerospace University, 2014 (in Chinese). | |
11 | BRADLEY M, DRONEY C K. Subsonic ultra green aircraft research: Phase 2. volume 2; hybrid electric design exploration: CR-218704[R]. Washington, D.C.: NASA, 2015. |
12 | JANSEN R, BOWMAN C, JANKOVSKY A, et al. Overview of NASA electrified aircraft propulsion (EAP) research for large subsonic transports[C]∥53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2017: 4701. |
13 | DELROSARIO R. A future with hybrid electric propulsion systems: A NASA perspective[R]. Washington, D.C.: NASA, 2014. |
14 | BAIK S K, KWON Y K, KIM H M, et al. Electrical performance analysis of HTS synchronous motor based on 3D FEM[J]. Physica C: Superconductivity and Its Applications, 2010, 470(20): 1763-1767. |
15 | MOULIN R, LEVEQUE J, DURANTAY L, et al. Superconducting multistack inductor for synchronous motors using the diamagnetism property of bulk material[J]. IEEE Transactions on Industrial Electronics, 2010, 57(1): 146-153. |
16 | LI L Y, CAO J W, KOU B Q, et al. Design of the HTS permanent magnet motor with superconducting armature winding[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 5200704. |
17 | QU T M, SONG P, YU X Y, et al. Development and testing of a 2.5 kW synchronous generator with a high temperature superconducting stator and permanent magnet rotor[J]. Superconductor Science and Technology, 2014, 27(4): 044026. |
18 | SCHREINER F, LIU Y Z, NOE M. Investigation of a six-pole stator system using No-insulation 2nd generation HTS coils for a 10 kW generator demonstrator[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5): 1-5. |
19 | JIANG Y, PEI R, XIAN W, et al. The design, magnetization and control of a superconducting permanent magnet synchronous motor[J]. Superconductor Science and Technology, 2008, 21(6): 065011. |
20 | QU T M, LI Y F, SONG P, et al. Design study of a 10-kW fully superconducting synchronous generator[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(4): 1-5. |
21 | KOVALEV K, IVANOV N, ZHURAVLEV S, et al. Development and testing of 10 kW fully HTS generator[J]. Journal of Physics: Conference Series, 2020, 1559(1): 012137. |
22 | SASA H, IWAKUMA M, YOSHIDA K, et al. Experimental evaluation of 1 kW-class prototype REBCO fully superconducting synchronous motor cooled by subcooled liquid nitrogen for E-aircraft[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5): 1-6. |
23 | MATSUZAKI H, KIMURA Y, OHTANI I, et al. An axial gap-type HTS bulk synchronous motor excited by pulsed-field magnetization with vortex-type armature copper windings[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2222-2225. |
24 | SUGIMOTO H, TSUDA T, MORISHITA T, et al. Development of an axial flux type PM synchronous motor with the liquid nitrogen cooled HTS armature windings[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 1637-1640. |
25 | WENG F J, ZHANG M, LAN T, et al. Fully superconducting machine for electric aircraft propulsion: Study of AC loss for HTS stator[J]. Superconductor Science and Technology, 2020, 33(10): 104002. |
26 | PATEL A, BASKYS A, MITCHELL-WILLIAMS T, et al. A trapped field of 17.7 T in a stack of high temperature superconducting tape[J]. Superconductor Science and Technology, 2018, 31(9): 09LT01. |
27 | DURRELL J H, DENNIS A R, JAROSZYNSKI J, et al. A trapped field of 17.6 T in melt-processed, bulk Gd-Ba-Cu-O reinforced with shrink-fit steel[J]. Superconductor Science and Technology, 2014, 27(8): 082001. |
28 | NAKAMURA T, OKUNO M, YOSHIKAWA M, et al. Quantitative characterization of nonlinear impedance and load characteristic of 50-kW-class fully superconducting induction/synchronous motor[J]. Physica C: Superconductivity and Its Applications, 2020, 578: 1353662. |
29 | SEKIGUCHI D, NAKAMURA T, MISAWA S, et al. Trial test of fully HTS induction/synchronous machine for next generation electric vehicle[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 5200904. |
30 | LI W L, SONG C Y, CAO J C, et al. Performance analysis of axial-radial flux type fully superconducting synchronous motor[C]∥ 2010 International Conference on Power System Technology. Piscataway: IEEE Press, 2010: 1-6. |
31 | SIVASUBRAMANIAM K, LASKARIS E T, LOKHANDWALLA M, et al. Development of a high speed multi-megawatt HTS generator for airborne applications[C]∥ 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century. Piscataway: IEEE Press, 2008: 1-4. |
32 | SONG D B, YANG W J, LIU Y, et al. Simulation calculation of a superconducting monopolar generator for airborne applications[C]∥ CSAA/IET International Conference on Aircraft Utility Systems (AUS 2018). London: IET, 2018: 1-6. |
33 | KOVALEV K L, VERZHBITSKY L G, KOZUB S S, et al. Brushless superconducting synchronous generator with claw-shaped poles and permanent magnets[C]∥ IEEE Transactions on Applied Superconductivity. Piscataway: IEEE Press, 2016: 1-4. |
34 | KEYSAN O, MUELLER M A. A transverse flux high-temperature superconducting generator topology for large direct drive wind turbines[J]. Physics Procedia, 2012, 36: 759-764. |
35 | WANG Y B, FENG Q, LI X L, et al. Design, analysis, and experimental test of a segmented-rotor high-temperature superconducting flux-switching generator with stationary seal[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 9047-9055. |
36 | LIN F, QU R H, LI D W. A novel fully superconducting geared machine[J]. IEEE Transactions on Applied Superconductivity, 2016, 26(7): 1-5. |
37 | CHEN X Y. Overview of patent technologies for practical high temperature superconducting materials[J]. Electronics World, 2018(6):88-89 (in Chinese). |
38 | 汪京荣. 第二代高温超导线材研究进展[J]. 低温物理学报, 2005, 27(S1): 870-876. |
WANG J R. Progresses in the second generation HTS wire[J]. Chinese Journal of Low Temperature Physics, 2005, 27(S 1): 870-876 (in Chinese). | |
39 | POLIKARPOVA M V, LUKYANOV P A, ABDYUKHANOV I M, et al. Bending strain effects on the critical current in Cu and Cu⁃Nb⁃stabilized YBCO-coated conductor tape[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 1-4. |
40 | 马衍伟. 实用化超导材料研究进展与展望[J]. 物理, 2015, 44(10): 674-683. |
MA Y W. Recent developments of practical superconducting materials[J]. Physics, 2015, 44(10): 674-683 (in Chinese). | |
41 | EISTERER M, MOON S H, FREYHARDT H C. Current developments in HTSC coated conductors for applications[J]. Superconductor Science and Technology, 2016, 29(6): 060301. |
42 | DU J, SUN J L, NIE Y, et al. Status and progress on an HTS strand with quasi-isotropic critical current[J]. CSEE Journal of Power and Energy Systems, 2019, 7(1): 150-155. |
43 | LUISA C. Electromechanical characteristics of REBCO tapes for their use in the high-current twisted stacked-tapes cable (TSTC) conductor for magnet applications[C]∥CERN-TE Magnet Seminar, 2014. |
44 | 赵裕, 周俊杰, 张恒光, 等. 超导卢瑟福电缆的尺寸设计与制造工艺[J]. 电线电缆, 2019(2): 16-18, 27. |
ZHAO Y, ZHOU J J, ZHANG H G, et al. The size design and manufacturing technology of superconducting Rutherford cable[J]. Wire & Cable, 2019(2): 16-18, 27 (in Chinese). | |
45 | SCHLACHTER S I, GOLDACKER W, GRILLI F, et al. Coated conductor Rutherford cables (CCRC) for high-current applications: Concept and properties[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 3021-3024. |
46 | DE MARZI G, CELENTANO G, AUGIERI A, et al. Experimental and numerical studies on current distribution in stacks of HTS tapes for cable-in-conduit-conductors[J]. Superconductor Science and Technology, 2021, 34(3): 035016. |
47 | 程锦闽, 汪惟源, 刘柏良, 等. 交流高温超导电缆构型研究综述[J]. 低温与超导, 2019, 47(6): 45-50. |
CHENG J M, WANG W Y, LIU B L, et al. Review of research on the configuration of AC high temperature superconducting cable[J]. Cryogenics & Superconductivity, 2019, 47(6): 45-50 (in Chinese). | |
48 | 韩正男. 高温超导电枢绕组电机关键技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2017. |
HAN Z N. Research on key technologies of high temperature superconducting armature winding motor[D]. Harbin: Harbin Institute of Technology, 2017 (in Chinese). | |
49 | YANG J P, ZHENG J, WEI B G, et al. Numerical study on AC loss reduction effect of the narrow REBCO tape in different size coils[C]∥ 2020 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD). Piscataway: IEEE Press, 2020: 1-2. |
50 | MACHURA P, LI Q. AC loss reduction through flux diverters for superconducting wireless charging coils at high frequencies[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(3): 1-10. |
51 | KAWAGOE A, KUDOU K, KANEMARU R, et al. Winding configurations and AC loss of superconducting synchronous REBCO motors[J]. Journal of Physics: Conference Series, 2020, 1559(1): 012144. |
52 | 张凯贺. 超导电枢的特点及其设计方法研究[D]. 杭州: 浙江大学, 2019: 84-87. |
ZHANG K H. Research on features and design method of the superconducting armature windings[D]. Hangzhou: Zhejiang University, 2019: 84-87 (in Chinese). | |
53 | KOMIYA M, AIKAWA T, YOSHIDA K, et al. Numerical analysis on the influence of armature winding configuration on AC loss of 10 MW fully superconducting generators of electric aircrafts[J]. Journal of Physics: Conference Series, 2019, 1293(1): 012074. |
54 | MICHAEL P C, KVITKOVIC J, PAMIDI S V, et al. Development of MgB2-cabled conductors for fully superconducting rotating electric machines[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1-5. |
55 | ANVAR V A, ILIN K, YAGOTINTSEV K A, et al. Bending of CORC® cables and wires: Finite element parametric study and experimental validation[J]. Superconductor Science and Technology, 2018, 31(11): 115006. |
56 | BAIK S, KWON Y, PARK S, et al. Performance analysis of a superconducting motor for higher efficiency design[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 5202004. |
57 | 吴磊,孙大新,刘中国,王辉.磁流体密封技术简介[J].液压气动与密封,2015,35(8):70-73. |
WU L, SUN D X, LIU Z G, Wang H. Introduction of magnetic fluid sealing technology[J]. Hydraulics pneumatics & seals, 2015,35(8):70-73 (in Chinese). | |
58 | AYAI N, YAMAZAKI K, KIKUCHI M, et al. Electrical and mechanical properties of DI-BSCCO type HT reinforced with metallic sheathes[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 3014-3017. |
59 | SUNG LEE T, JIN HWANG Y, LEE J, et al. The effects of co-wound Kapton, stainless steel and copper, in comparison with no insulation, on the time constant and stability of GdBCO pancake coils[J]. Superconductor Science and Technology, 2014, 27(6): 065018. |
60 | NAGAYA S, WATANABE T, TAMADA T, et al. Development of high strength pancake coil with stress controlling structure by REBCO coated conductor[J]. IEEE Transactions on Applied Superconductivity, 2013, 23(3): 4601204. |
61 | OTTEN S, DHALLÉ M, GAO P, et al. Enhancement of the transverse stress tolerance of REBCO Roebel cables by epoxy impregnation[J]. Superconductor Science and Technology, 2015, 28(6): 065014. |
62 | HAHN S, KIM Y, LING J Y, et al. No-insulation coil under time-varying condition: Magnetic coupling with external coil[J]. IEEE Transactions on Applied Superconductivity: A Publication of the IEEE Superconductivity Committee, 2013, 23(3): 4601705. |
63 | KIM S B, SAITOU A, JOO J H, et al. The normal-zone propagation properties of the non-insulated HTS coil in cryocooled operation[J]. Physica C: Superconductivity and Its Applications, 2011, 471(21-22): 1428-1431. |
64 | BADEL A, OKADA T, TAKAHASHI K, et al. Detection and protection against quench/local thermal runaway for a 30 T cryogen-free magnet[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5): 1-5. |
65 | GODDARD K F, LUKASIK B, SYKULSKI J K. Alternative designs of high-temperature superconducting synchronous generators[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(6): 3805-3811. |
66 | MALÉ G, LUBIN T, MEZANI S, et al. 2D analytical modeling of a wholly superconducting synchronous reluctance motor[J]. Superconductor Science and Technology, 2011, 24(3): 035014. |
67 | KRINGS A, BOGLIETTI A, CAVAGNINO A, et al. Soft magnetic material status and trends in electric machines[J]. IEEE Transactions on Industrial Electronics, 2017, 64(3): 2405-2414. |
68 | AL-MOSAWI M K, BEDUZ C, YANG Y. Construction of a 100 kVA high temperature superconducting synchronous generator[J]. IEEE Transactions on Applied Superconductivity, 2005, 15(2): 2182-2185. |
69 | KIM S, LEE C, BANG J, et al. Manipulation of screening currents in an (RE)Ba2Cu3O7– x superconducting magnet[J]. Materials Research Express, 2018, 6(2): 026004. |
70 | WILSON M N. 100 years of superconductivity and 50 years of superconducting magnets[J]. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 3800212. |
71 | 张卓然, 王东, 花为. 混合励磁电机结构原理、设计与运行控制技术综述及展望[J]. 中国电机工程学报, 2020, 40(24): 7834-7850, 8221. |
ZHANG Z R, WANG D, HUA W. Overview of configuration, design and control technology of hybrid excitation machines[J]. Proceedings of the CSEE, 2020, 40(24): 7834-7850, 8221 (in Chinese). | |
72 | HARAN K S, KALSI S, ARNDT T, et al. High power density superconducting rotating machines—development status and technology roadmap[J]. Superconductor Science and Technology, 2017, 30(12): 123002. |
73 | ZHOU Y, SU H, XIE F, et al. Rotor flexible support components design of a high temperature superconducting motor[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(2): 1-5. |
74 | LIU Y Z, QU R H, ZHU Z, et al. Analysis on the performances of a rotor screen for a 12 MW superconducting direct-drive wind generator[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(5): 1-5. |
75 | KIM H J, LEE T S, KIM J, et al. Design and experimental evaluation on kA-class HTS binary superconducting current lead using a liquid nitrogen bath under short-term current test[J]. IEEE Transactions on Applied Superconductivity, 2014, 24(3): 1-5. |
76 | SONG X W, BÜHRER C, BRUTSAERT P, et al. Ground testing of the world’s first MW-class direct-drive superconducting wind turbine generator[J]. IEEE Transactions on Energy Conversion, 2020, 35(2): 757-764. |
77 | WEN H M, BAILEY W, GODDARD K, et al. Performance test of a 100 kW HTS generator operating at 67 K–77 K[J]. IEEE Transactions on Applied Superconductivity, 2009, 19(3): 1652-1655. |
78 | HARA S, IWAMI Y, KAWASAKI R, et al. Development of liquid hydrogen cooling system for a rotor of superconducting generator[J]. IEEE Transactions on Applied Superconductivity, 2021, 31(5): 1-5. |
79 | LIU L Y, CHEN Y, ZHANG H Y, et al. Quench behavior comparison between solid nitrogen and conduction cooled REBCO coated conductor[J]. IEEE Transactions on Applied Superconductivity, 2018, 28(8): 1-5. |
80 | PEREZ A, VAN DER WOUDE R R, DEKKER R. Rotor cooling concept for the ASuMED superconductive motor[J]. IOP Conference Series: Materials Science and Engineering, 2019, 502: 012139. |
81 | 刘哲凯, 李开进, 陈建文. 电机高压绝缘简析[J]. 科技传播, 2012, 4(16): 137-138. |
LIU Z K, LI K J, CHEN J W. Brief analysis of high voltage insulation of motor[J]. Science and technology communication, 2012,4(16): 137-138 (in Chinese). | |
82 | YANAGISAWA Y, SATO K, PIAO R, et al. Removal of degradation of the performance of an epoxy impregnated YBCO-coated conductor double pancake coil by using a polyimide-electrodeposited YBCO-coated conductor[J]. Physica C: Superconductivity, 2012, 476: 19-22. |
83 | TROCIEWITZ U P, DALBAN-CANASSY M, HANNION M, et al. 35.4 T field generated using a layer-wound superconducting coil made of REBa2Cu 3O7-x coated conductor[DB/OL]. arXiv preprint: 1110.6814, 2011. |
84 | UGLIETTI D, CHOI S, KIYOSHI T. Design and fabrication of layer-wound YBCO solenoids[J]. Physica C: Superconductivity and Its Applications, 2010, 470(20): 1749-1751. |
85 | GUPTA R, ANERELLA M, COZZOLINO J, et al. Second generation HTS quadrupole for FRIB[J]. IEEE Transactions on Applied Superconductivity, 2010, 21(3): 1888-1891. |
86 | WANG Y, SONG H, XU D, et al. An equivalent circuit grid model for no-insulation HTS pancake coils[J]. Superconductor Science and Technology, 2015, 28(4): 045017. |
87 | 隋银德. 高压电机绝缘系统的研究[D]. 哈尔滨: 哈尔滨理工大学, 2004. |
SUI Y D. Study of insulation system for HV electric machine[D]. Harbin: Harbin University of Science and Technology, 2004 (in Chinese). | |
88 | 黄晓峰. 浅析高压电机运行时的绝缘措施[J]. 河南科技, 2013(19): 87-88. |
HUANG X F. Analysis on insulation measures of high voltage motor in operation[J]. Journal of Henan Science and Technology, 2013(19): 87-88 (in Chinese). | |
89 | 张东东, 陈健, 王洪波, 等. 10kV级高压电机定子绕组绝缘技术的探讨[J]. 大电机技术, 2014(3): 41-43. |
ZHANG D D, CHEN J, WANG H B, et al. Discussion of insulation system of stator coils for 10 kV electric machine[J]. Large Electric Machine and Hydraulic Turbine, 2014(3): 41-43 (in Chinese). | |
90 | 付长禄, 杜敏娟, 丁国东. 国内外高电压少胶VPI绝缘的现状及发展方向[J]. 科技信息(科学教研), 2007(13): 224, 212. |
FU C L, DU M J, DING G D. Present situation and development direction of high voltage and less glue VPI insulation at home and abroad[J]. Science Information, 2007(13): 224, 212 (in Chinese). | |
91 | BRADLEY M, DRONEY C K. Subsonic ultra green aircraft research phase II: N+4 advanced concept development: CR-2012-217556[R]. Washington, D.C.: NASA, 2012 |
92 | KIM H DAE, FELDER J L, TONG M T, et al. Turboelectric distributed propulsion benefits on the N3-X vehicle[J]. Aircraft Engineering and Aerospace Technology, 2014, 86(6): 558-561. |
93 | LUGG R H. Magnetic advanced generation jet electric turbine: US8365510[P]. 2013-02-05. |
94 | 刘腾跃, 刘金超, 李明. 美国卢格系列高超声速组合发动机概念研究[J]. 航空动力, 2020(3): 15-18. |
LIU T Y, LIU J C, LI M. Research progress of lugg’s companies’ new engines for supersonic airliners[J]. Aerospace Power, 2020(3): 15-18 (in Chinese). | |
95 | ISMAGILOV F, VARYUKHIN A, VAVILOV V, et al. Electric machines development process for aviation hybrid propulsion systems[C]∥IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society. Piscataway: IEEE Press, 2020: 955-960. |
96 | PATEL A, CLIMENTE-ALARCON V, BASKYS A, et al. Design considerations for fully superconducting synchronous motors aimed at future electric aircraft[C]∥ 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC). Piscataway: IEEE Press, 2019: 1-6. |
97 | GRILLI F, BENKEL T, HÄNISCH J, et al. Superconducting motors for aircraft propulsion: The advanced superconducting motor experimental demonstrator project[J]. Journal of Physics: Conference Series, 2020, 1590(1): 012051. |
98 | MALKIN P, PAGONIS M. The design of fully superconducting power networks for future aircraft propulsion[C]∥49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, 2013. |
99 | PALMER J, SHEHAB E. Modelling of cryogenic cooling system design concepts for superconducting aircraft propulsion[J]. IET Electrical Systems in Transportation, 2016, 6(3): 170-178. |
100 | OKONKWO P P C. Conceptual design methodology for blended wing body aircraft[D]. Cranfield: Cranfield University, 2016. |
101 | BRELJE B J, MARTINS J R R A. Electric, hybrid, and turboelectric fixed-wing aircraft: A review of concepts, models, and design approaches[J]. Progress in Aerospace Sciences, 2019, 104: 1-19. |
102 | SCHAEFFER S B. Cryogenics and superconductivity for aircraft, explained[EB/OL]. (2021-03-29)[2021-5-31]. . |
103 | BERG F, PALMER J, MILLER P, et al. HTS system and component targets for a distributed aircraft propulsion system[J]. IEEE Transactions on Applied Superconductivity, 2017, 27(4): 1-7. |
104 | BOLAM R C, VAGAPOV Y, ANUCHIN A. A review of electrical motor topologies for aircraft propulsion[C]∥2020 55th International Universities Power Engineering Conference (UPEC). Piscataway: IEEE Press, 2020: 1-6. |
[1] | 黄维康, 张卓然, 达兴亚, 袁培博, 高华敏. 高速对转涵道风扇双驱动电机的热特性[J]. 航空学报, 2024, 45(8): 129048-129048. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学