[1] JENKINS D, VASIGH B. The economic impact of unmanned aircraft systems integration in the United States[R]. Blacksburg:Association for Unmanned Vehicle Systems International (AUVSI), 2013. [2] WOLF H. Comparing FAA activities the economic and regulatory state of unmanned aircraft systems & commercial space flight[C]//2014 IEEE Aerospace Conference. Piscataway:IEEE Press, 2014:1-11. [3] EASA. Drone collision task force:04-10-16[R]. EASA, 2016. [4] 闫少琨. 无人机运行安全风险评价[D]. 天津:中国民航大学, 2018. YAN S K. Evaluating the risk of unmanned aircraft operation[D]. Tianjin:Civil Aviation University of China, 2018(in Chinese). [5] CLOTHIER R A, WALKER R A. Safety risk management of unmanned aircraft systems[M]. Netherlands:Springer, 2015. [6] MULERO-PÁZMÁNY M, JENNI-EIERMANN S, STREBEL N, et al. Unmanned aircraft systems as a new source of disturbance for wildlife:A systematic review[J]. PLoS One, 2017, 12(6):e0178448. [7] RUCHTI J, SENKBEIL R, CARROLL J, et al. Unmanned aerial system collision avoidance using artificial potential fields[J]. Journal of Aerospace Information Systems, 2014, 11(3):140-144. [8] ALEXANDER R. Potential damage assessment of a mid-air collision with a small UAV[R]. Civil Aviation Safety Authority of Australian, 2013. [9] Joint Authorities for Rule making of Unmanned Systems. Guidelines on specific operations risk assessment(SORA)[P].2019-01-30. [10] FAA.Small unmanned aircraft regulati-ons:Part 107[S]. Washington, D.C.:FAA, 2016. [11] 刘菲, 吕人力. 民用无人机运行管理立法分析与建议[J]. 科技导报, 2020, 38(16):15-28. LIU F, LV R L. The legislation for unmanned aircraft operation and suggestions for improvement[J]. Science & Technology Review, 2020, 38(16):15-28(in Chinese). [12] 李相民, 薄宁, 代进进. 基于模型预测控制的多无人机避碰航迹规划研究[J]. 西北工业大学学报, 2017, 35(3):513-522. LI X M, BO N, DAI J J. Study on collision avoidance path planning for multi-UAVs based on model predictive control[J]. Journal of Northwestern Polytechnical University, 2017, 35(3):513-522(in Chinese). [13] LIN W M, TU C S, YANG R F, et al. Particle swarm optimisation aided least-square support vector machine for load forecast with spikes[J]. IET Generation, Transmission & Distribution, 2016, 10(5):1145-1153. [14] WANG J J, KUMBASAR T. Parameter optimization of interval Type-2 fuzzy neural networks based on PSO and BBBC methods[J]. IEEE/CAA Journal of Automatica Sinica, 2019, 6(1):247-257. [15] LINDQVIST B, MANSOURI S S, AGHA-MOHAMMADI A A, et al. Nonlinear MPC for collision avoidance and control of UAVs with dynamic obstacles[J]. IEEE Robotics and Automation Letters, 2020, 5(4):6001-6008. [16] SERRADELL L, WAGUÉ S, MOUREAU A, et al. Enhanced passive safety surveillance of a trivalent and a quadrivalent influenza vaccine in Denmark and Finland during the 2018/2019 season[J]. Human Vaccines & Immunotherapeutics, 2021, 17(4):1205-1210. [17] HLOW K. An initial parametric study of weight and energy thresholds for falling Unmanned Aerial Vehicles (UAVs)[C]//4th Workshop on Research, Education and Development of Unmanned Aerial Systems (REDUAS), 2017. [18] ZHANG Y J, HUANG Y J, CAO K, et al. A review of high precision finite element modelling methods for light and small UAS[J]. Journal of Physics:Conference Series, 2021, 1786(1):012041. [19] ZHANG Y J, HUANG Y J, LIANG K, et al. High-precision modeling and collision simulation of small rotor UAV[J]. Aerospace Science and Technology, 2021, 118:106977. [20] 网易航空网,无人机事故因机件故障,非人为失误[EB/OL].(2016-08-31)[2021-12-10].https://www.163.com/news/article/BVPV58Q2000181OH.html. Netease aviation network,UAV accidents are mostly caused by machine parts failure and non-human error.[EB/OL].(2016-08-31)[2021-12-10].https://www.163.com/news/article/BVPV58Q2000181OH.html (in Chinese). [21] WILD G, MURRAY J, BAXTER G. Exploring civil drone accidents and incidents to help prevent potential air disasters[J]. Aerospace, 2016, 3(3):22. [22] 张宏宏, 甘旭升, 李双峰, 等. 复杂低空环境下考虑区域风险评估的无人机航路规划[J]. 仪器仪表学报, 2021, 42(1):257-266. ZHANG H H, GAN X S, LI S F, et al. UAV route planning considering regional risk assessment under complex low altitude environment[J]. Chinese Journal of Scientific Instrument, 2021, 42(1):257-266(in Chinese). [23] 中国新闻网. 女选手参加铁人三项赛,被摄像无人机砸中头部[EB/OL]. (2014-04-09)[2021-12-10]. https://www.chinanews.com.cn/gj/2014/04-09/6045021.shtml. China News Network. Female athletes in triathlon were hit in the head by camera drones[EB/OL]. (2014-04-09)[2021-12-10]. https://www.chinanews.com.cn/gj/2014/04-09/6045021.shtml (in Chinese). [24] 黄颖杰. 民用轻小型无人机机体动力学建模与碰撞响应分析方法研究[D]. 西安:西北工业大学,2021. HUANG Y J. Research on dynamic modeling and collision response analysis method of civil light and small UAV[D]. Xi'an:Northwestern Polytechnical University, 2021(in Chinese). [25] 川报观察客户端. 成都双流机场遭无人机入侵四天影响60架航班警方悬赏举报[EB/OL]. (2017-04-20)[2021-12-10]. http://www.takefoto.cn/viewnews-1131610.html Chuanbao Observation Client. Chengdu Shuangliu Airport was invaded by unmanned aerial vehicles for four days, which affected 60 flights. The police offered a reward for reporting[EB/OL]. (2017-04-20)[2021-12-10]. http://www.takefoto.cn/viewnews-1131610.html (in Chinese). [26] 全球无人机网. 一架Embraer 190民航因与无人机碰撞而损坏[EB/OL]. (2019-12-19)[2021-12-10]. https://www.81uav.cn/uav-news/201912/19/67736.html. Global UAV Network. An Embraer 190 civil aviation aircraft was damaged due to collision with a UAV[EB/OL]. (2019-12-19)[2021-12-10]. https://www.81uav.cn/uav-news/201912/19/67736.html (in Chinese). [27] 郭亚周, 刘小川, 郭军, 等. 微型无人机和鸟体撞击飞机风挡玻璃对比实验[J]. 实验力学, 2020, 35(1):167-173. GUO Y Z, LIU X C, GUO J, et al. Comparative experiment of aircraft windshield glass subjected to micro-UAV and bird body impact[J]. Journal of Experimental Mechanics, 2020, 35(1):167-173(in Chinese). [28] 蒋皓静, 刘卫, 杨玉斋, 等. 消费型锂离子电池安全试验研究浅析[J]. 标准科学, 2021(6):92-98. JIANG H J, LIU W, YANG Y Z, et al. Experimental study on safety of soft packed lithium battery in consumer products[J]. Standard Science, 2021(6):92-98(in Chinese). [29] ASSURE. FAA sUAS COE task A3 UAS airborne collision hazard severity evaluation[R]. Washington, D.C.:FAA, 2017. [30] MENG X H, SUN Y J, YU J Y, et al. Dynamic response of the horizontal stabilizer during UAS airborne collision[J]. International Journal of Impact Engineering, 2019, 126:50-61. [31] RATTANAGRAIKANAKORN B, GRANSDEN D I, SCHUURMAN M, et al. Multibody system modelling of unmanned aircraft system collisions with the human head[J]. International Journal of Crashworthiness, 2020, 25(6):689-707. [32] LIU H, MAN M H C, NG B F, et al. Airborne collision severity study on engine ingestion caused by harmless-categorized drones[C]//AIAA Scitech 2021 Forum. Reston:AIAA, 2021:1263. [33] DRUMOND T, GRECO M, CIMINI C. Evaluation of increase weight in a wing fixed leading edge design to support UAS impact[C]//Proceedings of the 10th Aerospace Technology Congress, 2019. [34] LU X H, LIU X C, LI Y L, et al. Simulations of airborne collisions between drones and an aircraft windshield[J]. Aerospace Science and Technology, 2020, 98:105713. [35] ASSURE. A4 final report:UAS ground collision severity evaluation[R]. Washington, D.C.:FAA, 2017. [36] ASSURE. A14 final report:UAS ground collision severity evaluation 2017-2019[R]. Washington, D.C.:FAA, 2019. [37] LOW K H. An initial parametric study of weight and energy thresholds for falling unmanned aerial vehicles (UAVs)[C]//2017 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS). Piscataway:IEEE Press, 2017:240-245. [38] KOH C H, LOW K H, LI L, et al. Weight threshold estimation of falling UAVs (Unmanned Aerial Vehicles) based on impact energy[J]. Transportation Research Part C:Emerging Technologies, 2018, 93:228-255. [39] 王家伟. 人体胸部有限元模型建模及无人机碰撞工况损伤研究[D]. 北京:北京交通大学, 2020. WANG J W. Development of human thorax finite element model and injury investigation under UAV collision condition[D]. Beijing:Beijing Jiaotong University,2020(in Chinese). [40] 郑奎涛, 龚明生, 蒋大鹏, 等. 基于火箭橇的无人机碰撞民用飞机试验技术研究[J]. 航空工程进展, 2020, 11(5):724-729. ZHENG K T, GONG M S, JIANG D P, et al. Research on the test technology of civil aircraft impacted by UAV based on rocket sled[J]. Advances in Aeronautical Science and Engineering, 2020, 11(5):724-729(in Chinese). [41] CAMPOLETTANO E T, BLAND M L, GELLNER R A, et al. Ranges of injury risk associated with impact from unmanned aircraft systems[J]. Annals of Biomedical Engineering, 2017, 45(12):2733-2741. [42] 中国民用航空局. 中国民用航空规章-运输类飞机适航标准:CCAR-25-R3[S]. 北京:中国民用航空局, 2001. CAAC. Airworthiness standard of transport aircraft:CCAR-25-R3[S].Beijing:CAAC, 2001(in Chinese). [43] FAR. Airworthiness standards:Transport category airplanes:FAR25[S]. Washington, D.C.:FAA,2015. [44] 李凯, 陆崑, 吴沂宁. 无人机撞击人体损伤定量评估方法研究[J]. 民航学报, 2020, 4(4):62-64. LI K, LU K, WU Y N. Unmanned aircraft system ground collision severity quantitative evaluation[J]. Journal of Civil Aviation, 2020, 4(4):62-64(in Chinese). [45] GENNARELLI T, WODZIN E. The Abbreviated Injury Scale[R]. Des Plaines:American Association for Automotive Medicine,2005. [46] HALLDIN P H,BROLIN K,KLEVIEN S.Investigation of conditions that affect neck compression-flexion injuries using numerical techniques[J]. Stapp Car Crash Journal, 2000,44(3):127-38. [47] ADAMSON C, CYMET T. Ankle sprains:Evaluation, treatment, rehabilitation[J]. Maryland Medical Journal, 1997,46(10):530. [48] CAMACHO D L,NIGHTINGA R W, MYERS B S.Surface friction in near-vertex head and neck impact increases risk of injury[J].Journal of Biomechanics, 1999,32(3):293-301. [49] FAA. Micro unmanned aircraft systems aviation rule making committee recommendations final report[EB/OL]. (2016-04-01)[2021-12-10]. https://www.faa.gov/uas/resources/policy_library/media/Micro-UAS-ARCFINAL-Report. [50] VERSACE J. A review of the severity index[C]//15th Stapp Car Crash Conference. Warrendale:SAE International, 1971. [51] KLINICH K D. Techniques for developing child dummy protection reference values:NHTSA Docket No74-14[R].NHTSA Child Injury Protection Team, 1996. [52] NEATHERY R F, KROELL C K, MERTZ H J. Prediction of thoracic injury from dummy responses[C]//SAE Technical Paper Series. Warrendale:SAE International, 1975. [53] AENOR. Audio/video,information and communication technology equipment Part 1:Safety requirements:IEC62368-1[P]. AENOR, 2016. |