[1] 陈坚强, 涂国华, 张毅锋, 等. 高超声速边界层转捩研究现状与发展趋势[J]. 空气动力学学报, 2017, 35(3):311-337. CHEN J Q, TU G H, ZHANG Y F, et al. Hypersnonic boundary layer transition:What we know, where shall we go[J]. Acta Aerodynamica Sinica, 2017, 35(3):311-337(in Chinese). [2] 向星皓, 张毅锋, 陈坚强, 等. 横流转捩模型研究进展[J]. 空气动力学学报, 2018, 36(2):254-264, 180. XIANG X H, ZHANG Y F, CHEN J Q, et al. Progress in transition models for cross-flow instabilities[J]. Acta Aerodynamica Sinica, 2018, 36(2):254-264, 180(in Chinese). [3] 王亮. 高超音速边界层转捩的模式研究[D]. 北京:清华大学, 2008. WANG L. Modeling flow transition in hypersonic boundary layer[D]. Beijing:Tsinghua University, 2008(in Chinese). [4] 周玲, 阎超, 郝子辉, 等. 转捩模式与转捩准则预测高超声速边界层流动[J]. 航空学报, 2016, 37(4):1092-1102. ZHOU L, YAN C, HAO Z H, et al. Transition model and transition criteria for hypersonic boundary layer flow[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(4):1092-1102(in Chinese). [5] ZHANG Y F, ZHANG Y R, CHEN J Q, et al. Numerical simulations of hypersonic boundary layer transition based on the flow solver Chant 2.0[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston:AIAA, 2017. [6] 徐晶磊, 宋友富, 张扬, 等. 用于可压缩自由剪切流动的湍流混合长度[J]. 航空学报, 2016, 37(6):1841-1850. XU J L, SONG Y F, ZHANG Y, et al. Turbulence mixing length for compressible free shear flows[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1841-1850(in Chinese). [7] 陈坚强. 国家数值风洞工程(NNW)关键技术研究进展[J/OL]. 中国科学:技术科学, (2021-04-28)[2021-04-28]. https://kns.cnki.net/kcms/detail/11.5844.TH.202104-28.0914.006.html. CHEN J Q. Advances in the key technologies of Chinese National Numerical Wind Tunnel Project[J/OL]. Scientia Sinica Technologica, (2021-04-28)[2021-04-28]. https://kns.cnki.net/kcms/detail/11.5844.TH.202104-28.0914.006.html (in Chinese). [8] LANGTRY R B. A correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:University of Stuttgart, 2006. [9] 赵磊. 高超声速后掠钝板边界层横流定常涡失稳的研究[D]. 天津:天津大学, 2017. ZHAO L. Study on instability of stationary crossflow vortices in hypersonic swept blunt plate boundary layers[D]. Tianjin:Tianjin University, 2017(in Chinese). [10] 向星皓, 张毅锋, 陈坚强, 等. 横流转捩模型参数不确定度量化分析与应用研究[J]. 宇航学报, 2020, 41(9):1141-1150. XIANG X H, ZHANG Y F, CHEN J Q, et al. Uncertainty quantification analysis and application research on cross-flow transition model parameters[J]. Journal of Astronautics, 2020, 41(9):1141-1150(in Chinese). [11] REED H L, HAYNES T S. Transition correlations in three-dimensional boundary layers[J]. AIAA Journal, 1994, 32(5):923-929. [12] LANGTRY R. Extending the γ-Reθt local correlation based transition model for crossflow effects[C]//45th AIAA Fluid Dynamics Conference. Reston:AIAA, 2015. [13] RONALD RADEZTSKY J J R, REIBERT M, SARIC W, et al. Effect of micron-sized roughness on transition in swept-wing flows[C]//31st Aerospace Sciences Meeting. Reston:AIAA, 1993. [14] 陈久芬, 凌岗, 张庆虎, 等. 7°尖锥高超声速边界层转捩红外测量实验[J]. 实验流体力学, 2020, 34(1):60-66. CHEN J F, LING G, ZHANG Q H, et al. Infrared thermography experiments of hypersonic boundary-layer transition on a 7° half-angle sharp cone[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(1):60-66(in Chinese). [15] DINZL D J, CANDLER G V. Direct simulation of hypersonic crossflow instability on an elliptic cone[J]. AIAA Journal, 2017, 55(6):1769-1782. [16] 张毅锋, 向星皓, 万兵兵, 等. 一种基于稳定性方法的横流转捩实验数据拓展技术:CN111380663A[P]. 2020-07-07. ZHANG Y F, XIANG X H, WAN B B, et al. Cross flow transition experimental data expansion technology based on stability method:CN111380663A[P]. 2020-07-07(in Chinese). [17] XIANG X H, REN H J, ZHANG Y F, et al. Transition prediction with hypersonic cross-flow model on HIFiRE-5[J]. Journal of Physics:Conference Series, 2021, 1786:012051. |