易淼荣, 赵慧勇, 乐嘉陵, 肖保国, 郑忠华
收稿日期:
2018-10-15
修回日期:
2018-11-02
出版日期:
2019-08-15
发布日期:
2018-12-24
通讯作者:
赵慧勇
E-mail:gmreszhao@163.com
基金资助:
YI Miaorong, ZHAO Huiyong, LE Jialing, XIAO Baoguo, ZHENG Zhonghua
Received:
2018-10-15
Revised:
2018-11-02
Online:
2019-08-15
Published:
2018-12-24
Supported by:
摘要: 针对高超声速流动的γ-Reθ转捩模型在模拟强制转捩时存在捕获边界层内扰动不足的缺点,将RANS(Reynolds Averaged Navier-Stokes)框架改为IDDES(Improved Delayed Detached Eddy Simulation)框架,既能像基于RANS框架的转捩模型一样模拟复杂构型的自然转捩,又能发挥IDDES能够捕获更多脉动信息的优点,较为准确地模拟粗糙颗粒诱导强制转捩。通过对一系列简单构型的自然转捩及来流马赫数为6条件下平板上单个粗糙颗粒诱导强制转捩的模拟表明,模型既能体现γ-Reθ转捩模型的优点,在自然转捩模拟中具有较强的鲁棒性,能够反映雷诺数等因素对转捩位置的影响规律;也能体现IDDES方法的优点,能够捕捉粗糙颗粒诱导的扰动及涡结构,从而较为准确地刻画出强制转捩的整个流程。
中图分类号:
易淼荣, 赵慧勇, 乐嘉陵, 肖保国, 郑忠华. 基于IDDES框架的γ-Reθ转捩模型[J]. 航空学报, 2019, 40(8): 122726-122726.
YI Miaorong, ZHAO Huiyong, LE Jialing, XIAO Baoguo, ZHENG Zhonghua. γ-Reθ transition model based on IDDES frame[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(8): 122726-122726.
[1] | 周恒,赵耕夫. 流动稳定性[M]. 北京:国防工业出版社,2004:1-86. ZHOU H, ZHAO G F. Hydrodynamic stability[M].Beijing:National Defense Industry Press, 2004:1-86(in Chinese). |
[38] | TIRTEY S C, CHAZOT O, WALPOT L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011,50(2):407-418. |
[2] | LEE C, CHEN S Y. Recent progress in the study of transition in the hypersonic boundary layer[J]. National Science Review, 2019, 6(1):155-170. |
[15] | LANGEL C M, CHOW R, DAM C P. A computational approach to simulating the effects of realistic surface roughness on boundary layer transition:AIAA-2014-0234[R]. Reston, VA:AIAA, 2014. |
[39] | TIRTEY S C, CHAZOT O.Characterization of hypersonic roughness induced transition for the EXPERT flight experiment:AIAA-2009-7215[R]. Reston, VA:AIAA, 2006. |
[3] | MAYER C, TERZI D, FASEL H. DNS of complete transition to turbulence via oblique breakdown at Mach 3:Part Ⅱ:AIAA-2009-3558[R]. Reston, VA:AIAA, 2009. |
[16] | KRAUSE M, BEHR M, BALLMANN J.Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model:AIAA-2008-2598[R]. Reston, VA:AIAA, 2008. |
[4] | DUCROS F, COMTE P, LESIEUR M. Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate[J]. Journal of Fluid Mechanics, 1996, 326:1-36. |
[17] | ZHANG X D, GAO Z H. A numerical research on a compressibility-correlated langtrys transition model for double wedge boundary layer flows[J]. Chinese Journal of Aeronautics, 2011, 24(3):249-257. |
[5] | MACK L M. Boundary layer linear stability theory:AGARD Report No. 709[R]. Paris:AGARD, 1984. |
[18] | CHENG G, NICHOLS R, NEROORKAR K D,et al. Validation and assessment of turbulence transition models:AIAA-2009-1141[R]. Reston, VA:AIAA, 2009. |
[6] | KOCIAN T S, MOYES A J, MULLEN C D, et al. PSE and spatial biglobal instability analysis of HIFiRE-5 geometry:AIAA-2016-3346[R]. Reston, VA:AIAA, 2016. |
[19] | YI M R, ZHAO H Y, LE J L. Hypersonic natural and forced transition simulation by correlation-based intermittency model:AIAA-2017-2337[R]. Reston, VA:AIAA, 2017. |
[20] | 易淼荣,赵慧勇,乐嘉陵. 基于γ-Reθ转捩模型的高超声速复杂构型转捩模拟[J]. 实验流体力学, 2018, 32(4):1-11. YI M R, ZHAO H Y, LE J L. Hypersonic boundary layer transition simulation of complex configuration using γ-Reθtransition model[J].Journal of Experiments in Fluid Mechanics, 2018, 32(4):1-11(in Chinese). |
[21] | CHEN X, ZHU Y, LEE C.Interactions between second mode and low-frequency waves in a hypersonic boundary layer[J]. Journal of Fluid Mechanics, 2017, 820:693-735. |
[22] | 潘翀, 王晋军. 自由来流扰动引起的旁路转捩研究进展[J]. 力学进展, 2011, 41(6):668-685. PAN C, WANG J J. Progress in bypass transition induced by free-stream disturbance[J]. Advances in Mechanics. 2011, 41(6):668-685(in Chinese). |
[7] | BERRY S A, NOWAK R J, HORVATH T J. Boundary layer control for hypersonic airbreathing vehicles:AIAA-2004-2246[R]. Reston, VA:AIAA, 2004. |
[23] | YOON S, BARNHARDT M, CANDLER G. Simulations of high-speed flow over an isolated roughness:AIAA-2010-1573[R]. Reston, VA:AIAA, 2010. |
[8] | MENTER F R, LANGTRY R B.A correlation-based transition model using local variables part1-model formulation:GT 2004-53452[R]. New York:ASME, 2004. |
[24] | DUAN Z W, XIAO Z X, FU S. Simulation of transition triggered by isolated roughness in hypersonic boundary layer:AIAA-2012-3076[R]. Reston, VA:AIAA, 2012. |
[9] | LANGTRY R B. A Correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:University of Stuttgart, 2006:34-57. |
[25] | XIAO L H, XIAO Z X, DUAN Z W, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150. |
[10] | LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906. |
[26] | BORG M P. Laminar instability and transition on the X-51A[D]. West Lafayette, IN:Purdue University, 2009:38-68. |
[11] | WATANABE Y, MISAKA T, OBAYASHI S.Application of crossflow transition criteria to local correlation-based transition model:AIAA-2009-1145[R]. Reston, VA:AIAA, 2009. |
[27] | SORENSEN N N, BECHMANN A, ZAHLE F. 3D CFD computations of transitional flows using DES and a correlation based transition model[J]. Wind Energy, 2011, 14(1):77-90. |
[12] | SEYFERT C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations:AIAA-2012-0448[R]. Reston, VA:AIAA, 2012. |
[28] | ALAM M F, WALTERS D K, THOMPSON D S. A transition-sensitive hybrid RANS/LES modeling methodology for CFD applications:AIAA-2013-0995[R]. Reston, VA:AIAA, 2013. |
[13] | SEYFERT C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[J]. Journal of Aircraft, 2013, 50(5):1533-1539. |
[29] | WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for reynolds-averaged navier-stokes simulations of transitional flow[J]. ASME Journal of Fluids Engineering, 2008, 130(12):121401. |
[30] | 乔磊, 白俊强,华俊. Gamma-Theta经验转捩模型在DES中的应用[J]. 航空工程进展, 2013, 4(2):226-231. QIAO L, BAI J Q, HUA J.Application of Gamma-Theta transition model in DES[J]. Advances in Aeronautical Science and Engineering, 2013, 4(2):226-231(in Chinese). |
[31] | 赵慧勇.超燃冲压整体发动机并行数值研究[D]. 绵阳:中国空气动力研究与发展中心, 2005:41-97. ZHAO H Y.Massively parallel computation on scramjet combustor[D]. Mianyang:China Aerodynamics Research and Development Center,2005:41-97(in Chinese). |
[32] | GRITSKEVICH M S, GARBARUK A V, SCHÜTZE J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow Turbulence & Combustion, 2012, 88(3):431-449. |
[33] | 韩亦宇. 高超声速进气道激波振荡的DES数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2014:2-45. HAN Y Y. Detached Eddy Simulation(DES) of hypersonic inlet shock oscillation[D]. Mianyang:China Aerodynamics Research and Development Center, 2014:2-45(in Chinese). |
[14] | LANGTRY R B, SENGUPTA K, YEH D T, et al. Extending the γ-Reθt local correlation based transition model for crossflow effects:AIAA-2015-2474[R]. Reston, VA:AIAA, 2015. |
[34] | GOEBEL S G. An experimental investigation of compressible turbulent mixing layers[D]. Urbana-Champaign, IL:University of Illinois, 1990:20-79. |
[15] | LANGEL C M, CHOW R, DAM C P. A computational approach to simulating the effects of realistic surface roughness on boundary layer transition:AIAA-2014-0234[R]. Reston, VA:AIAA, 2014. |
[35] | FORSYTHE J R.Investigation of modified Menter's two-equation turbulence models for supersonic applications:AIAA-1999-0873[R]. Reston, VA:AIAA, 1999. |
[16] | KRAUSE M, BEHR M, BALLMANN J.Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model:AIAA-2008-2598[R]. Reston, VA:AIAA, 2008. |
[36] | CHEN F J, MALIK M R. Boundary-Layer transition on a cone and flat plate at Mach 3.5[J]. AIAA Journal, 1989, 27(6):687-693. |
[17] | ZHANG X D, GAO Z H. A numerical research on a compressibility-correlated langtrys transition model for double wedge boundary layer flows[J]. Chinese Journal of Aeronautics, 2011, 24(3):249-257. |
[37] | NEUENHAHN T, OLIVIER H. Influence of the wall temperature and the entropy layer effects on double wedge shock boundary layer interactions:AIAA-2006-8136[R]. Reston, VA:AIAA, 2006. |
[18] | CHENG G, NICHOLS R, NEROORKAR K D,et al. Validation and assessment of turbulence transition models:AIAA-2009-1141[R]. Reston, VA:AIAA, 2009. |
[38] | TIRTEY S C, CHAZOT O, WALPOT L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011,50(2):407-418. |
[19] | YI M R, ZHAO H Y, LE J L. Hypersonic natural and forced transition simulation by correlation-based intermittency model:AIAA-2017-2337[R]. Reston, VA:AIAA, 2017. |
[20] | 易淼荣,赵慧勇,乐嘉陵. 基于γ-Reθ转捩模型的高超声速复杂构型转捩模拟[J]. 实验流体力学, 2018, 32(4):1-11. YI M R, ZHAO H Y, LE J L. Hypersonic boundary layer transition simulation of complex configuration using γ-Reθtransition model[J].Journal of Experiments in Fluid Mechanics, 2018, 32(4):1-11(in Chinese). |
[39] | TIRTEY S C, CHAZOT O.Characterization of hypersonic roughness induced transition for the EXPERT flight experiment:AIAA-2009-7215[R]. Reston, VA:AIAA, 2006. |
[21] | CHEN X, ZHU Y, LEE C.Interactions between second mode and low-frequency waves in a hypersonic boundary layer[J]. Journal of Fluid Mechanics, 2017, 820:693-735. |
[22] | 潘翀, 王晋军. 自由来流扰动引起的旁路转捩研究进展[J]. 力学进展, 2011, 41(6):668-685. PAN C, WANG J J. Progress in bypass transition induced by free-stream disturbance[J]. Advances in Mechanics. 2011, 41(6):668-685(in Chinese). |
[23] | YOON S, BARNHARDT M, CANDLER G. Simulations of high-speed flow over an isolated roughness:AIAA-2010-1573[R]. Reston, VA:AIAA, 2010. |
[24] | DUAN Z W, XIAO Z X, FU S. Simulation of transition triggered by isolated roughness in hypersonic boundary layer:AIAA-2012-3076[R]. Reston, VA:AIAA, 2012. |
[25] | XIAO L H, XIAO Z X, DUAN Z W, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150. |
[26] | BORG M P. Laminar instability and transition on the X-51A[D]. West Lafayette, IN:Purdue University, 2009:38-68. |
[27] | SORENSEN N N, BECHMANN A, ZAHLE F. 3D CFD computations of transitional flows using DES and a correlation based transition model[J]. Wind Energy, 2011, 14(1):77-90. |
[28] | ALAM M F, WALTERS D K, THOMPSON D S. A transition-sensitive hybrid RANS/LES modeling methodology for CFD applications:AIAA-2013-0995[R]. Reston, VA:AIAA, 2013. |
[29] | WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for reynolds-averaged navier-stokes simulations of transitional flow[J]. ASME Journal of Fluids Engineering, 2008, 130(12):121401. |
[30] | 乔磊, 白俊强,华俊. Gamma-Theta经验转捩模型在DES中的应用[J]. 航空工程进展, 2013, 4(2):226-231. QIAO L, BAI J Q, HUA J.Application of Gamma-Theta transition model in DES[J]. Advances in Aeronautical Science and Engineering, 2013, 4(2):226-231(in Chinese). |
[31] | 赵慧勇.超燃冲压整体发动机并行数值研究[D]. 绵阳:中国空气动力研究与发展中心, 2005:41-97. ZHAO H Y.Massively parallel computation on scramjet combustor[D]. Mianyang:China Aerodynamics Research and Development Center,2005:41-97(in Chinese). |
[32] | GRITSKEVICH M S, GARBARUK A V, SCHÜTZE J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow Turbulence & Combustion, 2012, 88(3):431-449. |
[33] | 韩亦宇. 高超声速进气道激波振荡的DES数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2014:2-45. HAN Y Y. Detached Eddy Simulation(DES) of hypersonic inlet shock oscillation[D]. Mianyang:China Aerodynamics Research and Development Center, 2014:2-45(in Chinese). |
[34] | GOEBEL S G. An experimental investigation of compressible turbulent mixing layers[D]. Urbana-Champaign, IL:University of Illinois, 1990:20-79. |
[35] | FORSYTHE J R.Investigation of modified Menter's two-equation turbulence models for supersonic applications:AIAA-1999-0873[R]. Reston, VA:AIAA, 1999. |
[36] | CHEN F J, MALIK M R. Boundary-Layer transition on a cone and flat plate at Mach 3.5[J]. AIAA Journal, 1989, 27(6):687-693. |
[37] | NEUENHAHN T, OLIVIER H. Influence of the wall temperature and the entropy layer effects on double wedge shock boundary layer interactions:AIAA-2006-8136[R]. Reston, VA:AIAA, 2006. |
[38] | TIRTEY S C, CHAZOT O, WALPOT L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011,50(2):407-418. |
[39] | TIRTEY S C, CHAZOT O.Characterization of hypersonic roughness induced transition for the EXPERT flight experiment:AIAA-2009-7215[R]. Reston, VA:AIAA, 2006. |
[1] | 孙志坤, 史志伟, 张伟麟, 李铮, 孙琪杰. 等离子体激励器对高速翼型升阻特性的影响[J]. 航空学报, 2022, 43(S2): 23-39. |
[2] | 化为卓, 高岭, 陈戈, 李益文, 巩耕, 王延涛, 魏彪. 基于等离子体炬的磁流体动力学实验系统[J]. 航空学报, 2022, 43(S2): 1-7. |
[3] | 黄依峰, 曾舒华, 江中正, 陈伟芳. 非线性耦合本构在高空侧向喷流中的数值研究[J]. 航空学报, 2022, 43(S2): 8-22. |
[4] | 罗凯, 王永海, 汪球, 栗继伟, 李峥, 聂春生, 李铮. 高焓风洞中等离子体激励流动控制试验[J]. 航空学报, 2022, 43(S2): 89-96. |
[5] | 张旭东, 李铮, 董昊, 高思源, 纪祖赑, 黎凯昕, 白光辉. 高超声速流场等离子体逆向喷流减阻特性[J]. 航空学报, 2022, 43(S2): 115-123. |
[6] | 胡守超, 庄宇, 李贤, 江涛. 高超声速气动热标模HyHERM-Ⅰ试验[J]. 航空学报, 2022, 43(S2): 233-248. |
[7] | 李昊歌, 杨华, 杨雨欣, 陈伟芳. 高超声速升力体迎风面精细化降热优化设计[J]. 航空学报, 2022, 43(S2): 124-137. |
[8] | 吴东, 杨鸿, 赵文峰, 罗跃. 高超声速飞行器碳基结构高温应变测量[J]. 航空学报, 2022, 43(S2): 160-169. |
[9] | 聂春生, 袁野, 马伟, 曹占伟, 于明星. 主动引射气体参数对平板空气舵气动热影响[J]. 航空学报, 2022, 43(S2): 170-179. |
[10] | 马正雪, 罗振兵, 赵爱红, 周岩, 谢玮, 刘强, 朱寅鑫, 彭文强. 高超声速流场等离子体合成射流逆向喷流特性[J]. 航空学报, 2022, 43(S2): 192-203. |
[11] | 李珺, 王俊峰, 赵雅甜, 罗世彬. 面向非设计工况的激波针-喷流复合构型研究[J]. 航空学报, 2022, 43(9): 125949-125949. |
[12] | 刘传振, 孟旭飞, 刘荣健, 白鹏. 双后掠乘波体高超声速试验与数值分析[J]. 航空学报, 2022, 43(9): 126015-126015. |
[13] | 刘清扬, 雷娟棉, 刘周, 石磊, 周伟江. 适用于可压缩流动的γ-Reθt-fRe转捩模型[J]. 航空学报, 2022, 43(8): 125794-125794. |
[14] | 郑辉, 邱雷, 袁慎芳, 杨晓飞, 卢绪龙, 薛兆鹏. C/C热防护结构高温气流损伤导波监测实验方法[J]. 航空学报, 2022, 43(8): 225659-225659. |
[15] | 朱志斌, 尚庆, 沈清. 高超声速边界层转捩模型横流效应修正与应用[J]. 航空学报, 2022, 43(7): 125685-125685. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
访问总数:6658907今日访问:1341版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学