[1] ANDERSON D A, TANNEHILL J C, PLETCHER R H. Computational fluid mechanics and heat transfer[M]. New York: Homisphere Publishing Corporation, 1984: 10-15. [2] NAKAHASHI K. Aeronautical CFD in the age of petaflops-scale computing: From unstructured to Cartesian meshes[J]. European Journal of Mechanics-B/Fluids, 2013, 40: 75-86. [3] FREMAUX M C, HALL R M. COMSAC: Computational methods for stability and control: NASA/CP-2004-213028/PT1[R]. Washington, D.C.: NASA, 2004. [4] COTTRELL J A, HUGHES T J R, BAZILEVS Y. Isogeometric analysis: toward integration of CAD and FEA[M]. Hoboken:Wiley Publishing, 2009: 55-58. [5] THOMPSON J F, THAMES F C, MASTIN C W. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies[J]. Journal of Computational Physics, 1974, 15(3): 299-319. [6] LEE K. 3-D transonic flow computations using grid systems with block structure[C]//5th Computational Fluid Dynamics Conference. Reston: AIAA, 1981. [7] SAWADA K, TAKANASHI S. A numerical investigation on wing/nacelle interferences of USB configuration[C]//25th AIAA Aerospace Sciences Meeting. Reston: AIAA, 1987. [8] 常兴华, 马戎, 张来平. 并行化非结构重叠网格隐式装配技术[J]. 航空学报, 2018, 39(6): 121780. CHANG X H, MA R, ZHANG L P. Parallel implicit hole-cutting method for unstructured overset grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6): 121780 (in Chinese). [9] NAKAHASHI K, ITO Y, TOGASHI F. Some challenges of realistic flow simulations by unstructured grid CFD[J]. International Journal for Numerical Methods in Fluids, 2003, 43(6-7): 769-783. [10] CLARKE D K, SALAS M D, HASSAN H A. Euler calculations for multielement airfoils using Cartesian grids[J]. AIAA Journal, 1986, 24(3): 353-358. [11] 方宝瑞. 飞机气动布局设计[M]. 北京:航空工业出版社, 1997. FANG B R. Aircraft aerodynamic layout design[M]. Beijing: Aviation Industry Press, 1997 (in Chinese). [12] WALKER L A. Flight testing the X-36-the test polit’s perspective: NASA CR-198058[R]. Washington, D.C.: NASA, 1997. [13] 陈浩, 袁先旭, 华如豪, 等. 基于全线程树数据结构的笛卡尔网格高效生成技术[J]. 航空学报, 2021, 42(12): 125170. CHEN H, YUAN X X, HUA R H, et al. Cartesian grid efficient generation method based on fully threaded tree structure[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 125170 (in Chinese). [14] MITCHELTREE R A, SALAS M D, HASSAN H A. Grid embedding technique using Cartesian grids for Euler solutions[J]. AIAA Journal, 1988, 26(6): 754-756. [15] MORINISHI K. A finite difference solution of the Euler equations on non-body-fitted Cartesian grids[J]. Computers & Fluids, 1992, 21(3): 331-344. [16] DE ZEEUW D L. A quadtree-based adaptively-refined Cartesian-grid algorithm for solution of the Euler equations[D]. Ann Arbor: University of Michigan, 1993. [17] KHOKHLOV A M. Fully threaded tree algorithms for adaptive refinement fluid dynamics simulations[J]. Journal of Computational Physics, 1998, 143(2): 519-543. [18] AFTOSMIS M J. Aspects of Cartesian grid methods for aerodynamic flows with complex geometries[M]//28th Lecture Series in Advanced Computational Fluid Dynamics, 1997. [19] DADONE A, GROSSMAN B. An immersed body methodology for inviscid flows on Cartesian grids[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston: AIAA, 2002. [20] LEE J D, RUFFIN S. Development of a turbulent wall-function based viscous Cartesian-grid methodology[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2007. [21] KIDRON Y, MORYOSSEF Y, LEVY Y. Turbulent flow predictions using a Cartesian flow solver[C]//19th AIAA Computational Fluid Dynamics. Reston: AIAA, 2009. [22] PAILLERE H, POWELL K, DARREN D. A wave-model-based refinement criterion for adaptive-grid computation of compressible flows[C]//30th Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 1992. [23] FORRER H, JELTSCH R. A higher-order boundary treatment for Cartesian-grid methods[J]. Journal of Computational Physics, 1998, 140(2): 259-277. [24] 张涵信. 无波动、无自由参数的耗散差分格式[J]. 空气动力学学报, 1988, 6(2): 143-165. ZHANG H X. Non-oscillatory and non-free-parameter dissipation difference scheme[J]. Acta Aerodynamica Sinica, 1988, 6(2): 143-165 (in Chinese). [25] LEER B V. Flux vector splitting for Euler equations[J]. Lecture Notes in Physics, 1982: 507-512. [26] GUSTAFSSON B, SUNDSTRÖM A. Incompletely parabolic problems in fluid dynamics[J]. SIAM Journal on Applied Mathematics, 1978, 35(2): 343-357. [27] 唐志共, 陈浩, 毕林, 等. 自适应笛卡尔网格超声速黏性流动数值模拟[J]. 航空学报, 2018, 39(5): 121697. TANG Z G, CHEN H, BI L, et al. Numerical simulation of supersonic viscous flow based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5): 121697 (in Chinese). [28] 吴军飞, 秦永明, 黄湛, 等. 小展弦比飞翼标模纵航向气动特性低速实验研究[J]. 空气动力学学报, 2016, 34(1): 125-130. WU J F, QIN Y M, HUANG Z, et al. Low speed experiment on longitudinal and lateral aerodynamic characteristics of the low aspect ratio flying wing calibration model[J]. Acta Aerodynamica Sinica, 2016, 34(1): 125-130 (in Chinese). [29] 张耀冰, 周乃春, 陈江涛. 小展弦比飞翼标模雷诺数影响数值模拟研究[J]. 空气动力学学报, 2015, 33(3): 279-288. ZHANG Y B, ZHOU N C, CHEN J T. Numerical investigation of Reynolds number effects on a low-aspect-ratio flying-wing model[J]. Acta Aerodynamica Sinica, 2015, 33(3): 279-288 (in Chinese). |