[1] KROO I. Aerodynamic concepts for future aircraft:AIAA-1999-3524[R]. Reston:AIAA, 1999. [2] ROMAN D, ALLEN J, LIEBECK R. Aerodynamic design challenges of the blended-wing-body subsonic transport:AIAA-2000-4335[R]. Reston:AIAA, 2000. [3] LINEHAN T I, MOHSENI K. Aerodynamics and lateral stability of low-aspect-ratio wings with dihedral at low Reynolds numbers:AIAA-2016-1063[R]. Reston:AIAA, 2016. [4] GRESHAM N, WANG Z J, GURSUL I. Aerodynamics of free-to-roll low aspect ratio wings:AIAA-2009-0543[R]. Reston:AIAA, 2009. [5] MCPARLIN S, BRUCE R, HEPWORTH A, et al. Low speed wind tunnel tests on the 1303 UCAV concept:AIAA-2006-2985[R]. Reston:AIAA, 2006. [6] CUMMINGS R, PETTERSON K, JIRASEK A, et al. SACCON static and dynamic motion flow physics simulation using cobalt:AIAA-2010-4691[R]. Reston:AIAA, 2010. [7] SCHUETTE A, HUMMEL D, HITZEL S M. Numerical and experimental analyses of the vortical flow around the SACCON configuration:AIAA-2010-4690[R]. Reston:AIAA, 2010. [8] BOELENS O J, LUCKRING J M, BREITSAMTER C, et al. Numerical and theoretical considerations for the design of the AVT-183 diamond-wing experimental investigations:AIAA-2015-0062[R]. Reston:AIAA, 2015. [9] ERICSSON L, BEYERS M. High-alpha aerodynamics of a slender tailless aircraft:AIAA-2002-0094[R]. Reston:AIAA, 2002. [10] GILLIOT A, MORGAND S, MONNIER J C, et al. Static and dynamic SACCON PIV tests, part I:Forward flowfield:AIAA-2010-4395[R]. Reston:AIAA, 2010. [11] VICROY D D, LOESER T D, SCHVTTE A. SACCON forced oscillation tests at DNW-NWB and NASA Langley 14×22-foot tunnel:AIAA-2010-4394[R]. Reston:AIAA, 2010. [12] 李林, 马超, 王立新. 小展弦比飞翼布局飞机稳定特性[J]. 航空学报, 2007, 28(6):1312-1317. LI L, MA C, WANG L X. Stability features of low aspect-ratio flying wings[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6):1312-1317(in Chinese). [13] 马松辉, 吴成富, 陈怀民. 飞翼飞机稳定性与操纵性研究[J]. 飞行力学, 2006, 24(3):17-21. MA S H, WU C F, CHEN H M. Study on stability and manoeuvrability of flying wing aircraft[J]. Flight Dynamics, 2006, 24(3):17-21(in Chinese). [14] HUANG X, HANFF E. Free-to-roll trajectory and related attractors of a 65° delta wing rolling at high incidence:AIAA-1999-4103[R]. Reston:AIAA, 1999. [15] KONRATH R, SCHRÖDER A, KOMPENHANS J. Analysis of PIV results obtained for the VFE-265° delta wing configuration at sub-and transonic speeds:AIAA-2006-3003[R]. Reston:AIAA, 2006. [16] DONOHOE S R, BANNINK W J. Surface reflective visualizations of shock-wave/vortex interactions above a delta wing[J]. AIAA Journal, 1997, 35(10):1568-1573. [17] HUANG X Z. Comprehensive experimental studies on vortex dynamics over military wing configurations in IAR:AIAA-2003-3940[R]. Reston:AIAA, 2003. [18] MITCHELL A, MORTON S, FORSYTHE J. Analysis of delta wing vortical substructures using detached-eddy simulation[J]. AIAA Journal, 1997, 44(5):13. [19] BARBERIS D, MOLTON P, RENAC F, et al. Vortex control on delta wings:AIAA-2004-2620[R]. Reston:AIAA, 2004. [20] 苏继川, 黄勇, 钟世东, 等. 小展弦比飞翼跨声速典型流动特性研究[J]. 空气动力学学报, 2015, 33(3):307-312, 318. SU J C, HUANG Y, ZHONG S D, et al. Research on flow characteristics of low-aspect-ratio flying-wing at transonic speed[J]. Acta Aerodynamica Sinica, 2015, 33(3):307-312, 318(in Chinese). [21] 孔轶男, 黄建栋, 王立新, 等. 涡流控制在小展弦比飞翼布局飞机上的应用研究[J]. 空气动力学学报, 2008, 26(4):435-439. KONG Y N, HUANG J D, WANG L X, et al. Vortex control in low aspect ratio flying wing[J]. Acta Aerodynamica Sinica, 2008, 26(4):435-439(in Chinese). [22] 单继祥, 黄勇, 苏继川, 等. 小展弦比飞翼布局新型嵌入面航向控制特性研究[J]. 空气动力学学报, 2015, 33(3):296-301. SHAN J X, HUANG Y, SU J C, et al. Effect of the novel embedded control surfaces on direction control characteristic of low-aspect-ratio flying-wing configuration[J]. Acta Aerodynamica Sinica, 2015, 33(3):296-301(in Chinese). [23] 张彬乾, 马怡, 褚胡冰, 等. 小展弦比飞翼布局航向控制的组合舵面研究[J]. 航空学报, 2013, 34(11):2435-2442. ZHANG B Q, MA Y, CHU H B, et al. Investigation on combined control surfaces for the yaw control of low aspect ratio flying wing configuration[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(11):2435-2442(in Chinese). [24] 左林玄, 王晋军. 全动翼尖对无尾飞翼布局飞机气动特性影响的实验研究[J]. 空气动力学学报, 2010, 28(2):132-137. ZUO L X, WANG J J. Experimental study of the effect of AMT on aerodynamic performance of tailless flying wing aircraft[J]. Acta Aerodynamica Sinica, 2010, 28(2):132-137(in Chinese). [25] 杨起, 刘伟, 杨小亮, 等. 三角翼机翼摇滚主动控制多学科耦合数值模拟[J]. 航空学报, 2021, 42(12):124685. YANG Q, LIU W, YANG X L, et al. Multidisplinary interactions numerical simulation for active control of delta wing rock[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12):124685(in Chinese). [26] 李乾,王延奎,贾玉红.带边条翼的翼身组合体摇滚运动试验研究[J].航空学报,2022,43(6):126008. LI Q, WANG Y K, JIA Y H. Experimental study on roll oscillations over the wing-body configuration with strake wing[J]. Acta Aeronautica et Astronautica Sinica,2022, 43(6):126008(in Chinese). [27] 解克, 沈清, 王强. 小展弦比飞翼高速大攻角下横航向气动力散布分析[J]. 兵器装备工程学报, 2020, 41(8):115-120. XIE K, SHEN Q, WANG Q. Investigation of lateral-directional aerodynamics scatter for low aspect ratio flying wing configuration at high speed and high angle of attack conditions[J]. Journal of Ordnance Equipment Engineering, 2020, 41(8):115-120(in Chinese). [28] 张杰, 才义, 吴佳莉, 等. 跨声速自由滚转试验技术研究[J]. 空气动力学学报, 2016, 34(5):611-616. ZHANG J, CAI Y, WU J L, et al. Research on a free-to-roll transonic test capability[J]. Acta Aerodynamica Sinica, 2016, 34(5):611-616(in Chinese). [29] LAMAR J, CAPONE F, HALL R. AWS figure of merit (FOM) developed parameters from static, transonic model tests:AIAA-2003-0745[R]. Reston:AIAA, 2003. [30] CAPONE F, OWENS D B, HALL R. Development of a free-to-roll transonic test capability:AIAA-2003-0749[R]. Reston:AIAA, 2003. [31] HALL R, WOODSON S. Introduction to the abrupt wing stall program:AIAA-2003-0589[R]. Reston:AIAA, 2003. [32] 解克.小展弦比飞翼布局横向稳定性与失稳特性试验分析[D].北京:中国航天空气动力技术研究院, 2020:31-115. XIE K.Experimental analysis of lateral stability and departure characteristics of a low aspect ratio flying wing[D].Beijing:China Academy of Aerospace Aerodynamics, 2020:31-115(in Chinese). |