[1] AKIN D, SULLIVAN B. A survey of serviceable spacecraft failures[C]//AIAA Space Conference & Exposition, 2001:4540. [2] FLORES-ABAD A, MA O, PHAM K, et al. A review of space robotics technologies for on-orbit servicing[J]. Progress in Aerospace Sciences, 2014, 68:1-26. [3] KEMBLE S. Automated rendezvous and docking of spacecraft[J]. Proceedings of the Institution of Mechanical Engineers, 2007, 221(6):997. [4] REMBALA R, OWER C. Robotic assembly and maintenance of future space stations based on the ISS mission operations experience[J]. Acta Astronautica, 2009, 65(7-8):912-920. [5] DIMITROV D N, YOSHIDA K. Momentum distribution in a space manipulator for facilitating the post-impact control[C]//2004 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS), 2004:3345-3350. [6] OKI T, NAKANISHI H, YOSHIDA K. Time-optimal manipulator control for management of angular momentum distribution during the capture of a tumbling target[J]. Advanced Robotics, 2010, 24(3):441-466. [7] OKI T, NAKANISHI H, YOSHIDA K. Whole-body motion control for capturing a tumbling target by a free-floating space robot[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007:2256-2261. [8] ZAPPA B, LEGNANI G, ADAMINI R. Path planning of free-flying space manipulators:An exact solution for polar robots[J]. Mechanism and Machine Theory, 2005, 40(7):806-820. [9] 万文娅, 孙冲, 袁建平. 空间非合作目标多指包络抓捕路径设计[J]. 航空学报, 2020, 41(12):324041. WAN W Y, SUN C, YUAN J P. Multi-finger caging-based gripping path design for space non-cooperative targets[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12):324041(in Chinese). [10] 羊帆,张国良,原磊. 自由漂浮空间机器人末端轨迹优化跟踪控制[J]. 宇航学报, 2016, 37(7):846-853. YANG F, ZHANG G L, YUAN L. End-effector optimal tracking control of free-floating space robot[J]. Journal of Astronautics, 2016, 37(7):846-853(in Chinese). [11] WANG M M, LUO J J, YU M, et al. Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite[J]. Acta Astronautica, 2017, 141:98-109. [12] LUO J J, YU M, WANG M M, et al. A fast trajectory planning framework with task-priority for space robot[J]. Acta Astronautica, 2018, 152:823-835. [13] 周逸群,罗建军,王明明. 空间机器人抓捕目标后的载荷分配-空间机器人专刊[J]. 航空学报, 2021,42(1):523915. ZHOU Y Q, LUO J J, WANG M M. Load distribution for space robot after capturing the target[J]. Acta Aeronautica et Astronautica Sinica, 2021,42(1):523915. (in Chinese). [14] NGUYEN-HUYNH T C, SHARF I. Adaptive reactionless motion and parameter identification in post-capture of space debris[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):404-414. [15] PIERSIGILLI P, SHARF I, MISRA A K. Reactionless capture of a satellite by a two degree-of-freedom manipulator[J]. Acta Astronautica, 2010, 66(1-2):183-192. [16] ABIKO S, HIRZINGER G. An adaptive control for a free-floating space robot by using inverted chain approach[C]//2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007:2236-2241. [17] 张福海, 付宜利, 王树国. 惯性参数不确定的自由漂浮空间机器人自适应控制研究[J]. 航空学报, 2012, 33(12):2347-2354. ZHANG F H, FU Y L, WANG S G. Adaptive control of free-floating space robot with inertia parameter uncertainties[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(12):2347-2354(in Chinese). [18] 梁捷, 陈力. 漂浮基空间机器人捕获卫星过程动力学模拟及捕获后混合体运动的RBF神经网络控制[J]. 航空学报, 2013, 34(4):970-978. LIANG J, CHEN L. Dynamic modeling for free-floating space-based robot during satellite capture and RBF neural network control for compound body stable movement[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):970-978(in Chinese). [19] HOGAN N. Impedance Control:An approach to manipulation[C]//1984 American Control Conference, 1984:304-313. [20] CACCAVALE F, NATALE C, SICILIANO B, et al. Six-DOF impedance control based on angle/axis representations[J]. IEEE Transactions on Robotics and Automation, 1999, 15(2):289-300. [21] YOSHIDA K, NAKANISHI H. Impedance matching in capturing a satellite by a space robot[C]//Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS 2003), 2003:3059-3064. [22] RASTEGARI R, MOOSAVIAN S A A. Multiple impedance control of space free-flying robots via virtual linkages[J]. Acta Astronautica, 2010, 66(5-6):748-759. [23] ABIKO S, HIRZINGER G. On-line parameter adaptation for a momentum control in the post-grasping of a tumbling target with model uncertainty[C]//2007 IEE-E/RSJ International Conference on Intelligent Robots and Systems. 2007:847-852. [24] XIA P C, LUO J J, WANG M M, et al. Constrained compliant control for space robot post-capturing uncertain target[J]. Journal of Aerospace Engineering, 2018, 32(1):04018117. [25] STOLFI A, GASBARRI P, SABATINI M. A combined impedance-PD approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target[J]. Acta Astronautica, 2017, 139:243-253. [26] UYAMA N, NARUMI T. Hybrid impedance/position control of a free-flying space robot for detumbling a noncooperative Satellite[J]. IFAC-PapersOnLine, 49(17):230-235. [27] REN Y, LIU Y, JIN M, et al. Biomimetic object impedance control for dual-arm cooperative 7-DOF manipulators[J]. Robotics and Autonomous Systems, 2016, 75:273-287. |