[1] 王连庆, 胡雅楠, 车志刚, 等. 激光冲击强化7075铝合金熔焊接头的疲劳性能[J]. 航空学报, 2021, 42(5):524320. WANG L Q, HU Y N, CHE Z G, et al. Fatigue performance of laser shock processed fusion welded 7075 Al alloy[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(5):524320(in Chinese). [2] MENG G, JI B, HAN H, et al. Design and simulation of an innovative cylinder fabricated by selective laser melting[J]. Chinese Journal of Aeronautics, 2019, 32(1):133-142. [3] 金俊龙, 郭德伦, 刘琦, 等. 激光成形TC17钛合金线性摩擦焊接头组织与力学性能[J]. 焊接学报, 2019, 40(6):126-130, 166. JIN J L, GUO D L, LIU Q, et al. Microstructure and mechanical properties of linear friction welding joint of TC17 titanium alloy fabricated by laser forming[J]. Transactions of the China Welding Institution, 2019, 40(6):126-130, 166(in Chinese). [4] 刘浩东, 胡芳友, 戴京涛, 等. 军机薄壁结构损伤超声跨态处理新工艺[J]. 焊接学报, 2016, 37(10):77-80, 133. LIU H D, HU F Y, DAI J T, et al. New technology of ultrasonic processing across different phases in laser welding for damage repairing of thin-walled structure in military aircraft[J]. Transactions of the China Welding Institution, 2016, 37(10):77-80, 133(in Chinese). [5] ABIOYE T E, ZUHAILAWATI H, AIZAD S, et al. Geometrical, microstructural and mechanical characterization of pulse laser welded thin sheet 5052-H32 aluminium alloy for aerospace applications[J]. Transactions of Nonferrous Metals Society of China, 2019, 29(4):667-679. [6] 夏令, 吴友发, 余海松, 等. 铝锂合金激光焊接接头组织与缺陷研究进展[J]. 航空制造技术, 2018, 61(S2):77-81, 86. XIA L, WU Y F, YU H S, et al. Research progress on microstructure and defects in Al-Li alloy laser welded joint[J]. Aeronautical Manufacturing Technology, 2018, 61(2):77-81, 86(in Chinese). [7] 宫建锋, 李慧知, 李俐群, 等. 基于同轴图像传感的激光焊接过程质量监测技术[J]. 焊接学报, 2019, 40(1):37-42, 162. GONG J F, LI H Z, LI L Q, et al. Quality monitoring technology of laser welding process based on coaxial image sensing[J]. Transactions of the China Welding Institution, 2019, 40(1):37-42, 162(in Chinese). [8] 贺钧婷, 陈宝华, 孙文卿, 等. 基于机器视觉的激光辅助焊接[J]. 激光杂志, 2018, 39(11):47-50. HE J T, CHEN B H, SUN W Q, et al. Laser assisted welding based on machine-vision[J]. Laser Journal, 2018, 39(11):47-50(in Chinese). [9] LUO M, SHIN Y C. Vision-based weld pool boundary extraction and width measurement during keyhole fiber laser welding[J]. Optics and Lasers in Engineering, 2015, 64:59-70. [10] YOU D Y, GAO X D, KATAYAMA S. Monitoring of high-power laser welding using high-speed photographing and image processing[J]. Mechanical Systems and Signal Processing, 2014, 49(1-2):39-52. [11] TANG X, ZHONG P, ZHANG L L, et al. A new method to assess fiber laser welding quality of stainless steel 304 based on machine vision and hidden Markov models[J]. IEEE Access, 2020, 8:130633-130646. [12] GVNTHER J, PILARSKI P M, HELFRICH G, et al. Intelligent laser welding through representation, prediction, and control learning:An architecture with deep neural networks and reinforcement learning[J]. Mechatronics, 2016, 34:1-11. [13] ZHANG Z H, LI B, ZHANG W F, et al. Real-time penetration state monitoring using convolutional neural network for laser welding of tailor rolled blanks[J]. Journal of Manufacturing Systems, 2020, 54:348-360. [14] ZHANG Y X, YOU D Y, GAO X D, et al. Online monitoring of welding status based on a DBN model during laser welding[J]. Engineering, 2019, 5(4):671-678. [15] YANG Y T, YANG R Z, PAN L H, et al. A lightweight deep learning algorithm for inspection of laser welding defects on safety vent of power battery[J]. Computers in Industry, 2020, 123:103306. [16] WANG Q Y, JIAO W H, WANG P, et al. A tutorial on deep learning-based data analytics in manufacturing through a welding case study[J]. Journal of Manufacturing Processes, 2021, 63:2-13. [17] CAI W, WANG J Z, JIANG P, et al. Application of sensing techniques and artificial intelligence-based methods to laser welding real-time monitoring:A critical review of recent literature[J]. Journal of Manufacturing Systems, 2020, 57:1-18. [18] WANG B C, HU S J, SUN L, et al. Intelligent welding system technologies:State-of-the-art review and perspectives[J]. Journal of Manufacturing Systems, 2020, 56:373-391. [19] 纪守领, 李进锋, 杜天宇, 等. 机器学习模型可解释性方法、应用与安全研究综述[J]. 计算机研究与发展, 2019, 56(10):2071-2096. JI S L, LI J F, DU T Y, et al. Survey on techniques, applications and security of machine learning interpretability[J]. Journal of Computer Research and Development, 2019, 56(10):2071-2096(in Chinese). [20] SUNG A H. Ranking importance of input parameters of neural networks[J]. Expert Systems With Applications, 1998, 15(3-4):405-411. [21] RIBEIRO M T, SINGH S, GUESTRIN C. "Why should I trust You? ":Explaining the predictions of any classifier[C]//KDD'16:Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2016:1135-1144. [22] SIMONYAN K, VEDALDI A, ZISSERMAN A. Deep inside convolutional networks:Visualising image classification models and saliency maps[DB/OL]. arXiv preprint:1312.6034, 2013. [23] ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2016:2921-2929. [24] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. arXiv preprint:1409.1556, 2014. [25] DENG J, DONG W, SOCHER R, et al. ImageNet:A large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE Press, 2009:248-255. |