[1] XUE Z L, MA Y, GONG S K, et al. Impermeability of Y3Al5O12 ceramic against molten glassy calcium-magnesium-alumina-silicate[J]. Chinese Journal of Aeronautics, 2018, 31(12):2306-2311. [2] 段辉平, 李树杰, 刘登科, 等. SiC陶瓷与GH128镍基高温合金反应连接研究[J]. 航空学报, 2000, 21(S1):122-125. DUAN H P, LI S J, LIU D K, et al. Investigation on the reaction joining of sic ceramic to ni based superalloy[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(S1):122-125(in Chinese). [3] 卞红, 胡胜鹏, 宋晓国, 等. 钎焊温度对Ti60/AgCu/ZrO2接头界面组织及性能的影响[J]. 航空学报, 2017, 38(12):421402. BIAN H, HU S P, SONG X G, et al. Effect of brazing temperature on interfacial microstructure and mechanical property of Ti60/AgCu/ZrO2 joint[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12):421402(in Chinese). [4] BIAN H, SONG Y Y, LIU D, et al. Joining of SiO2 ceramic and TC4 alloy by nanoparticles modified brazing filler metal[J]. Chinese Journal of Aeronautics, 2020, 33(1):383-390. [5] VALENZA F, GAMBARO S, MUOLO M L, et al. Wetting of SiC by Al-Ti alloys and joining by in situ formation of interfacial Ti3 Si(Al)C2[J]. Journal of the European Ceramic Society, 2018, 38(11):3727-3734. [6] EUSTATHOPOULOS N, VOYTOVYCH R. The role of reactivity in wetting by liquid metals:A review[J]. Journal of Materials Science, 2016, 51(1):425-437. [7] LIN Q L, WANG L, SUI R. Wetting of AlN by moten Cu-8.6Zr-xTi ternary alloys at 1373 K[J]. Acta Materialia, 2021, 203:116488. [8] YANG J, LI H D, LEI X W, et al. Reactive wetting behavior and mechanism of AlN ceramic by CuNi-Xwt%Ti active filler metal[J]. Ceramics International, 2020, 46(4):4289-4299. [9] LI C, ZHANG K P, MAO X J, et al. Microstructure and mechanical properties of the AlON/Ti6Al4V active element brazing joint[J]. Materials Science and Engineering:A, 2020, 793:139859. [10] SUN Z, ZHANG L X, HAO T D, et al. Brazing of SiO2f/SiO2 composite to Invar using a graphene-modified Cu-23Ti braze filler[J]. Ceramics International, 2018, 44(13):15809-15816. [11] TIAN X Y, FENG J C, SHI J M, et al. Brazing of ZrB2-SiC-C ceramic and GH99 superalloy to form reticular seam with low residual stress[J]. Ceramics International, 2015, 41(1):145-153. [12] ZHAO Y X, WANG M R, CAO J, et al. Brazing TC4 alloy to Si3N4 ceramic using nano-Si3N4 reinforced AgCu composite filler[J]. Materials & Design, 2015, 76:40-46. [13] EUSTATHOPOULOS N, NICHOLAS M G, DREVET B. Wettability at high temperatures[M]. Oxford:Pergamon, 1999. [14] YOUNG T. An essay on the cohesion of fluids[J]. Philosophical Transactions of the Royal Society of London, 1805, 95:65-87. [15] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8):988-994. [16] WU M, CHANG L L, ZHANG L, et al. Effects of roughness on the wettability of high temperature wetting system[J]. Surface and Coatings Technology, 2016, 287:145-152. [17] SHEN P, FUJII H, NOGI K. Effect of temperature and surface roughness on the wettability of boron nitride by molten Al[J]. Journal of Materials Science, 2007, 42(10):3564-3568. [18] 吴茂, 常玲玲, 路新, 等. 粗糙度对金属/陶瓷反应润湿体系高温润湿性的影响[J]. 材料热处理学报, 2016, 37(7):25-32. WU M, CHANG L L, LU X, et al. Effects of surface roughness on wettability of reactive metal/ceramic wetting systems at high temperature[J]. Transactions of Materials and Heat Treatment, 2016, 37(7):25-32(in Chinese). [19] 付伟. Sn-Ti对石墨和陶瓷的润湿及低温连接机理研究[D]. 哈尔滨:哈尔滨工业大学, 2019. FU W. Research on the mechanism of wetting and low-temperature bonding of graphite and ceramics by Sn-Ti[D]. Harbin:Harbin Institute of Technology, 2019(in Chinese). [20] FU W, SONG X G, ZHAO Y X, et al. Effect of Ti content on the wetting behavior of Sn0.3Ag0.7Cu/AlN system[J]. Materials & Design, 2017, 115:1-7. [21] YANG L L, SHEN P, LIN Q L, et al. Wetting of porous graphite by Cu-Ti alloys at 1373 K[J]. Materials Chemistry and Physics, 2010, 124(1):499-503. [22] SHEN P, FUJII H, MATSUMOTO T, et al. The influence of surface structure on wetting of α-Al2O3 by aluminum in a reduced atmosphere[J]. Acta Materialia, 2003, 51(16):4897-4906. [23] SHEN P, FUJII H, MATSUMOTO T, et al. Wetting of (0001) α-Al2O3 single crystals by molten Al[J]. Scripta Materialia, 2003, 48(6):779-784. [24] VOYTOVYCH R, ROBAUT F, EUSTATHOPOULOS N. The relation between wetting and interfacial chemistry in the CuAgTi/alumina system[J]. Acta Materialia, 2006, 54(8):2205-2214. [25] VOITOVITCH R, MORTENSEN A, HODAJ F, et al. Diffusion-limited reactive wetting:study of spreading kinetics of Cu-Cr alloys on carbon substrates[J]. Acta Materialia, 1999, 47(4):1117-1128. [26] LIN Q L, YANG F, YANG H Y, et al. Wetting of graphite by molten Cu-xSn-yCr ternary alloys at 1373 K[J]. Carbon, 2020, 159:561-569. [27] SUI R, WANG J B, CI W J, et al. Reactive wetting of amorphous silica by Sn0.3Ag0.7Cu-xTi (x=1 and 3wt.%) alloys at 800-900℃[J]. Ceramics International, 2019, 45(10):12920-12925. [28] SONG X G, PASSERONE A, FU W, et al. Wetting and spreading behavior of Sn-Ti alloys on SiC[J]. Materialia, 2018, 3:57-63. [29] LI M M, SONG X G, HU S P, et al. Effect of Ti addition on the wetting and brazing of Sn0.3Ag0.7Cu filler on SiC ceramic[J]. Journal of the American Ceramic Society, 2019, 102(6):3318-3328. [30] LI L, WEI C, SHEN P, et al. DC-assisted rapid wetting of 3Y-PSZ by molten 72Ag-28Cu and its application in joining[J]. Journal of the European Ceramic Society, 2019, 39(6):2132-2139. [31] SONG X G, ZHAO Y X, HU S P, et al. Wetting of AgCu-Ti filler on porous Si3N4 ceramic and brazing of the ceramic to TiAl alloy[J]. Ceramics International, 2018, 44(5):4622-4629. [32] 刘桂武, 乔冠军, 卢天健, 等. Ni-56Si合金对SiC陶瓷的润湿和铺展[J]. 硅酸盐学报, 2010, 38(8):1509-1513. LIU G W, QIAO G J, LU T J, et al. Wetting and spreading of ni-56 si alloy on sic ceramic[J]. Journal of the Chinese Ceramic Society, 2010, 38(8):1509-1513(in Chinese). [33] AKSAY I A, HOGE C E, PASK J A. Wetting under chemical equilibrium and nonequilibrium conditions[J]. The Journal of Physical Chemistry, 1974, 78(12):1178-1183. [34] LAURENT V, CHATAIN D, EUSTATHOPOULOS N. Wettability of SiO2 and oxidized SiC by aluminium[J]. Materials Science and Engineering:A, 1991, 135:89-94. [35] ESPIÉ L, DREVET B, EUSTATHOPOULOS N. Experimental study of the influence of interfacial energies and reactivity on wetting in metal/oxide systems[J]. Metallurgical and Materials Transactions A, 1994, 25(3):599-605. [36] YANG J, HUANG J H, YE Z, et al. Influence of interfacial reaction on reactive wettability of molten Ag-Cu-X wt.%Ti filler metal on SiC ceramic substrate and mechanism analysis[J]. Applied Surface Science, 2018, 436:768-778. [37] KRITSALIS P, COUDURIER L, EUSTATHOPOULOS N. Contribution to the study of reactive wetting in the CuTi/Al2O3 system[J]. Journal of Materials Science, 1991, 26(12):3400-3408. [38] SAIZ E, CANNON R M, TOMSIA A P. Reactive spreading:adsorption, ridging and compound formation[J]. Acta Materialia, 2000, 48(18-19):4449-4462. [39] GREMILLARD L, SAIZ E, CHEVALIER J, et al. Wetting and strength in the tin-silver-titanium/sapphire system[J]. Zeitschrift Für Metallkunde, 2004, 95(4):261-265. [40] SUI R, JU C Y, ZHONG W Q, et al. Improved wetting of Al2O3 by molten Sn with Ti addition at 973-1273 K[J]. Journal of Alloys and Compounds, 2018, 739:616-622. [41] 林巧力. 金属熔体在碳化物陶瓷上的润湿性及铺展动力学[D]. 长春:吉林大学, 2011:29-52. LIN Q L. Wettability and spreading dynamics of carbide ceramics by molten metals[D]. Changchun:Jilin University, 2011:29-52(in Chinese). [42] LIN Q L, SUI R. Wetting of carbide ceramics (B4C, SiC, TiC and ZrC) by molten Ni at 1753 K[J]. Journal of Alloys and Compounds, 2015, 649:505-514. [43] YANG J, YE Z, HUANG J H, et al. First-principles calculations on wetting interface between Ag-Cu-Ti filler metal and SiC ceramic:Ag (11 1)/SiC (11 1) interface and Ag (11 1)/TiC(11 1) interface[J]. Applied Surface Science, 2018, 462:55-64. [44] LANDRY K, EUSTATHOPOULOS N. Dynamics of wetting in reactive metal/ceramic systems:linear spreading[J]. Acta Materialia, 1996, 44(10):3923-3932. [45] DEZELLUS O, HODAJ F, EUSTATHOPOULOS N. Chemical reaction-limited spreading:The triple line velocity versus contact angle relation[J]. Acta Materialia, 2002, 50(19):4741-4753. [46] DEZELLUS O, HODAJ F, EUSTATHOPOULOS N. Progress in modelling of chemical-reaction limited wetting[J]. Journal of the European Ceramic Society, 2003, 23(15):2797-2803. [47] BOUGIOURI V, VOYTOVYCH R, DEZELLUS O, et al. Wetting and reactivity in Ni-Si/C system:experiments versus model predictions[J]. Journal of Materials Science, 2007, 42(6):2016-2023. [48] CALDERON N R, VOYTOVYCH R, NARCISO J, et al. Wetting dynamics versus interfacial reactivity of AlSi alloys on carbon[J]. Journal of Materials Science, 2010, 45(8):2150-2156. [49] FU W, PASSERONE A, BIAN H, et al. Wetting and interfacial behavior of Sn-Ti alloys on zirconia[J]. Journal of Materials Science, 2019, 54(1):812-822. [50] MORTENSEN A, DREVET B, EUSTATHOPOULOS N. Kinetics of diffusion-limited spreading of sessile drops in reactive wetting[J]. Scripta Materialia, 1997, 36(6):645-651. [51] KRITSALIS P, LI J G, COUDURIER L, et al. Role of clusters on the wettability and work of adhesion of the Cu-Cr/Al2O3 system[J]. Journal of Materials Science Letters, 1990, 9(11):1332-1335. [52] KOLTSOV A, HODAJ F, EUSTATHOPOULOS N, et al. Wetting and interfacial reactivity in Ag-Zr/sintered AlN system[J]. Scripta Materialia, 2003, 48(4):351-357. [53] AN Q, CONG X S, SHEN P, et al. Roles of alloying elements in wetting of SiC by Al[J]. Journal of Alloys and Compounds, 2019, 784:1212-1220. [54] DREVET B, EUSTATHOPOULOS N. Wetting of ceramics by molten silicon and silicon alloys:A review[J]. Journal of Materials Science, 2012, 47(24):8247-8260. [55] 李庆奎, 钟晖, 戴艳阳, 等. Fe-Cr合金在TiO陶瓷上的润湿及其机理[J]. 中国有色金属学报, 2002, 12(4):677-681. LI Q K, ZHONG H, DAI Y Y, et al. Wettability and mechanism of liquid Fe-Cr on TiO[J]. The Chinese Journal of Nonferrous Metals, 2002, 12(4):677-681(in Chinese). [56] CHEN Z B, HU S P, SONG X G, et al. Brazing of SiC ceramics pretreated by chromium coating using inactive AgCu filler metal[J]. International Journal of Applied Ceramic Technology, 2020, 17(6):2591-2597. [57] SONG X G, CHEN Z B, HU S P, et al. Wetting behavior and brazing of titanium-coated SiC ceramics using Sn0.3Ag0.7Cu filler[J]. Journal of the American Ceramic Society, 2020, 103(2):912-920. [58] XU Q G, GUO L W, ZHANG L, et al. Wettability of zirconium-coated alumina by molten aluminum[J]. Surface and Coatings Technology, 2016, 302:150-157. [59] 黄志坤. Al-Si-X/(Pd-)SiC体系的高温润湿与界面行为研究[D]. 镇江:江苏大学, 2018. HUANG Z K. Research on the high-temperature wetting and interfacial behavior of Al-Si-X/(Pd-)SiC system[D]. Zhenjiang:Jiangsu University, 2018(in Chinese). [60] 朱亚龙. Si离子注入对金属/SiC体系润湿性和界面行为的影响研究[D]. 镇江:江苏大学, 2020. ZHU Y L. Effects of Si ion implantation on wettability and interfacial behavior of metal/SiC systems[D]. Zhenjiang:Jiangsu University, 2020(in Chinese). [61] SUN Z, CAO Y, ZHANG L X, et al. Carbothermal reduction reaction enhanced wettability and brazing strength of AgCuTi-SiO2f/SiO2 system[J]. Journal of the European Ceramic Society, 2020, 40(4):1488-1495. [62] ZHANG L X, CHANG Q, SUN Z, et al. Wetting of AgCuTi alloys on quartz fiber reinforced composite modified by vertically aligned carbon nanotubes[J]. Carbon, 2019, 154:375-383. [63] YANNOPOULOS S N, SIOKOU A, NASIKAS N K, et al. CO2-laser-induced growth of epitaxial graphene on 6H-SiC(0001)[J]. Advanced Functional Materials, 2012, 22(1):113-120. [64] DASKALOVA A, ANGELOVA L, CARVALHO A, et al. Effect of surface modification by femtosecond laser on zirconia based ceramics for screening of cell-surface interaction[J]. Applied Surface Science, 2020, 513:145914. [65] YANG L L, SHEN P, LIN Q L, et al. Effect of Cr on the wetting in Cu/graphite system[J]. Applied Surface Science, 2011, 257(14):6276-6281. [66] SWILER T P, LOEHMAN R E. Molecular dynamics simulations of reactive wetting in metal-ceramic systems[J]. Acta Materialia, 2000, 48(18-19):4419-4424. [67] 刘许旸. Ti-Al系熔体与陶瓷的润湿性及界面相互作用的行为研究[D]. 重庆:重庆大学, 2016:27-134. LIU X Y. Research on the wettability and interfacial interaction between Ti-Al molten alloys and ceramics[D]. Chongqing:Chongqing University, 2016:27-134(in Chinese). |