[1] NONWEILER T R F. Aerodynamic problems of manned space vehicles[J]. The Journal of the Royal Aeronautical Society, 1959, 63(585):521-528. [2] JONES J G, MOORE K C, PIKE J, et al. A method for designing lifting configurations for high supersonic speeds, using axisymmetric flow fields[J]. Ingenieur-Archiv, 1968, 37(1):56-72. [3] TAKASHIMA N, LEWIS M. Waverider configurations based on non-axisymmetric flow fields for engine-airframe integration[C]//32nd Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 1994. [4] SOBIECZKY H, DOUGHERTY F C, JONES K. Hypersonic waverider design from given shock waves[C]//First International Waverider Symposium. Maryland:University of Maryland, 1990:1-19. [5] SOBIECZKY H, ZORES B, WANG Z, et al. High speed flow design using the theory of osculating cones and ax-isymmetric flows[J]. Chinese Journal of Aeronautics, 1999, 12(1):3-10. [6] RODI P. The osculating flowfield method of waverider geometry generation[C]//43rd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2005. [7] 丁峰. 高超声速滑翔-巡航两级乘波设计方法研究[D]. 长沙:国防科学技术大学, 2012. DING F. Design study of hypersonic slide-cruise two-stage waverider[D]. Changsha:National University of Defense Technology, 2012(in Chinese). [8] 王庆文. 基于吻切理论的两级乘波体设计[D]. 长沙:国防科学技术大学, 2015. WANG Q W. The osculating method of the dual waverider geometry generation[D]. Changsha:National University of Defense Technology, 2015(in Chinese). [9] 刘珍. 吻切流场乘波气动设计理论和方法研究[D]. 长沙:国防科技大学, 2018. LIU Z. Research on novel aerodynamic design theory and methodology for osculating flowfield waverider[D]. Changsha:National University of Defense Technology, 2018(in Chinese). [10] 王发民, 丁海河, 雷麦芳. 乘波布局飞行器宽速域气动特性与研究[J]. 中国科学(E辑:技术科学), 2009, 39(11):1828-1835. WANG F M, DING H H, LEI M F. Aerodynamic characteristics research on wide-speed range waverider configuration[J]. Science in China (Series E:Technological Sciences), 2009, 39(11):1828-1835(in Chinese). [11] 李世斌, 罗世彬, 黄伟, 等. 新型宽速域高超声速飞行器气动特性研究[J]. 固体火箭技术, 2012, 35(5):588-592. LI S B, LUO S B, HUANG W, et al. Investigation on aerodynamic performance for a novel wide-ranged hypersonic vehicle[J]. Journal of Solid Rocket Technology, 2012, 35(5):588-592(in Chinese). [12] LI S B, LUO S B, HUANG W, et al. Influence of the connection section on the aerodynamic performance of the tandem waverider in a wide-speed range[J]. Aerospace Science and Technology, 2013, 30(1):50-65. [13] LI S B, HUANG W, WANG Z G, et al. Design and aerodynamic investigation of a parallel vehicle on a wide-speed range[J]. Science China Information Sciences, 2014, 57(12):1-10. [14] 刘传振, 白鹏, 陈冰雁. 双后掠乘波体设计及性能优势分析[J]. 航空学报, 2017, 38(6):120808. LIU C Z, BAI P, CHEN B Y. Design and property advantages analysis of double swept waverider[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(6):120808(in Chinese). [15] WANG J F, LIU C Z, BAI P, et al. Design methodology of the waverider with a controllable planar shape[J]. Acta Astronautica, 2018, 151:504-510. [16] LIU C Z, BAI P, YANG Y J, et al. Double swept waverider from osculating-cone method[J]. Journal of Aerospace Engineering, 2018, 31(6):06018004. [17] RODI P. Geometrical relationships for osculating cones and osculating flowfield waveriders[C]//49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2011. [18] RODI P. Vortex lift waverider configurations[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston:AIAA, 2012. [19] 段焰辉, 范召林, 吴文华. 定后掠角密切锥乘波体的生成和设计方法[J]. 航空学报, 2016, 37(10):3023-3034. DUAN Y H, FAN Z L, WU W H. Generation and design methods of osculating cone waverider with constant angle of sweepback[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):3023-3034(in Chinese). [20] 宋赋强, 阎超, 马宝峰. 一种宽速域乘波体的设计及气动特性研究[J]. 气体物理, 2017, 2(5):25-36. SONG F Q, YAN C, MA B F. Design and aerodynamic analysis of a wide speed waverider[J]. Physics of Gases, 2017, 2(5):25-36(in Chinese). [21] 刘传振, 白鹏, 陈冰雁, 等. 定平面形状乘波体及设计变量影响分析[J]. 宇航学报, 2017, 38(5):451-458. LIU C Z, BAI P, CHEN B Y, et al. Analysis on design variables for planform-controllable waverider[J]. Journal of Astronautics, 2017, 38(5):451-458(in Chinese). [22] 刘谋佶. 边条翼及分离涡研究[J]. 北京航空学院学报, 1987, 13(4):1-10. LIU M J. Studies on strake-wing aerodynamics and separated vortex[J]. Journal of Beijing Institute of Aeronautics and Astronautics, 1987, 13(4):1-10(in Chinese). [23] 刘传振, 刘强, 白鹏, 等. 涡波效应宽速域气动外形设计[J]. 航空学报, 2018, 39(7):121824. LIU C Z, LIU Q, BAI P, et al. Aerodynamic shape design integrating vortex and shock effects for width-velocity-range[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):121824(in Chinese). [24] LIU C Z, LIU Q, BAI P, et al. Planform-customized waverider design integrating with vortex effect[J]. Aerospace Science and Technology, 2019, 86:438-443. [25] 刘传振, 田俊武, 白鹏, 等. 双后掠乘波体的非线性升力增长[J]. 航空学报, 2019, 40(10):122864. LIU C Z, TIAN J W, BAI P, et al. Nonlinear lift increase of double swept waverider[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):122864(in Chinese). [26] LIU C Z, BAI P, TIAN J W, et al. Nonlinearity analysis of increase in lift of double swept waverider[J]. AIAA Journal, 2020, 58(1):304-314. [27] LIOU M S, STEFFEN C J Jr. A new flux splitting scheme[J]. Journal of Computational Physics, 1993, 107(1):23-39. [28] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605. [29] SCLAFANI A, DEHAAN M, VASSBERG J. OVERFLOW drag prediction for the DLR-F6 transport configuration:a DPW-II case study[C]//42nd AIAA Aerospace Sciences Meeting and Exhibit. Reston:AIAA, 2004. [30] 李素循. 典型外形高超声速流动特性[M]. 北京:国防工业出版社, 2008. LI S X. Hypersonic flow characteristics of typical configura-tions[M]. Beijing:National Defense Industry Press, 2008(in Chinese). |