[1] 徐世杰. 柔性航天器动力学建模与在轨振动控制研究[D]. 哈尔滨:哈尔滨工业大学,2019:1-9. XU S J. Research on flexible spacecraft dynamics modeling and on-orbit vibration control[D]. Harbin:Harbin Institute of Technology, 2019:1-9(in Chinese). [2] 曹登庆,白坤朝,丁虎,等. 大型柔性航天器动力学与振动控制研究进展[J]. 力学学报,2019,51(1):1-13. CAO D Q, BAI K C, DING H, et al. Advances in research on dynamics and vibration control of large flexible spacecraft[J]. Journal of Mechanics, 2019, 51(1):1-13(in Chinese). [3] 黄文虎,曹登庆,韩增尧. 航天器动力学与控制的研究进展与展望[J]. 力学进展,2012, 42(4):367-394. HUANG W H, CAO D Q, HAN Z Y. Research progress and prospect of spacecraft dynamics and control[J]. Advances in Mechanics, 2012, 42(4):367-394(in Chinese). [4] WASFY T, NOOR A. Computational strategy of flexible multi-body system[J]. Advances in Mechanics, 2006, 56(6):553-613. [5] SCHIEHLEN W. Computational dynamics:Theory and applications of multibody systems[J]. European Journal of Mechanics, 2006, 25(4):566-594. [6] BROGLIATO B, TEN A, PAOLI L, et al. Numerical simulation of finite dimensional multibody non-smooth mechanical systems[J]. Applied Mechanics Reviews, 2002, 55(2):107-149. [7] GEAR C W. Numerical initial value problems in ordinary differential equations[M]. Upper Saddle River:Prentice Hall, Inc, 1971:1-17. [8] BUTCHER J C. Implicit Runge-Kutta processes[J]. Mathematics of Computation, 1964, 18(85):50-64. [9] ZEIGLER B P, LEE J S. Theory of quantized systems:Formal basis for DEVS/HLA distributed simulation environment[J]. Proceedings of SPIE the International Society for Optical Engineering, 1998, 3369(1):49-58. [10] KOFMAN E, JUNCO S. Quantized-state systems:A DEVS approach for continuous system simulation[J]. Transactions of the Society for Modeling and Simulation International, 2001, 18(1):2-8. [11] KOFMAN E. Discrete event simulation of hybrid systems[M]. New York:Springer, 2004:1-21. [12] KOFMAN E. A Second-order approximation for DEVS simulation of continuous systems[J]. Simulation, 2002, 78(2):76-89. [13] KOFMAN E. A third order discrete event method for continuous system simulation[J]. Latin American Applied Research, 2006,36(2):101-108. [14] BERGERO F, CASELLA F, KOFMAN E, et al. On the efficiency of quantization-based integration methods for building simulation[J]. Building Simulation, 2017, 11(2):1-14. [15] MIGONI G, KOFMAN E. Linearly implicit discrete event methods for stiff ODE's[J]. Latin American Applied Research, 2009, 39(3):245-254. [16] MIGONI G, KOFMAN E, CELLIER F. Quantization-based new integration methods for stiff ordinary differential equations[J]. Simulation, 2012, 88(4):118-136. [17] MIGONI G, BORTOLOTTO M, KOFMAN E, et al. Linearly implicit quantization-based integration methods for stiff ordinary differential equations[J]. Simulation Modelling Practice and Theory, 2013, 35(6):118-136. [18] 朱雨童,王江云,韩亮. 基于量化状态积分的空间目标温度计算[J]. 红外与激光工程,2011, 40(12):2345-2348. ZHU Y T, WANG J Y, HAN L. Space target temperature calculation based on quantized state integration[J]. Infrared and Laser Engineering, 2011, 40(12):2345-2348(in Chinese). [19] 檀添,赵争鸣,李帛洋,等. 基于离散状态事件驱动的电力电子瞬态过程仿真方法[J]. 电工技术学报, 2017, 32(13):41-50. TAN T, ZHAO Z M, LI B Y, et al. A transient process simulation method for power electronics based on discrete state event-driven[J]. Transactions of China Electrotechnical Society, 2017, 32(13):41-50(in Chinese). [20] 李帛洋,赵争鸣,檀添,等. 后向离散状态事件驱动电力电子仿真方法[J]. 电工技术学报,2017, 32(12):42-49. LI B Y, ZHAO Z M, TAN T, et al. A backword discrete state event driven simulation method for power electronics based on finite state machine[J]. Transactions of China Electrotechnical Society, 2017, 32(12):42-49(in Chinese). [21] 王维. 基于Modelica的量化状态系统方法实现及其特性分析[D]. 武汉:华中科技大学,2017:14-25. WANG W. Quantized state system method implementation and its characteristic analysis based on Modelica[D]. Wuhan:Huazhong University of Science and Technology, 2017:14-25(in Chinese). [22] 李志华,吴晨佳,江德,等. 基于量化状态系统的柔性关节机器人动力学求解方法[J]. 机械工程学报, 2020, 56(3):121-129. LI Z H, WU C J, JIANG D, et al. The dynamics solving method of flexible joint robot based on quantized state system[J]. Journal of Mechanical Engineering, 2020, 56(3):121-129(in Chinese). [23] 余舜京,丰志伟,张青斌. 柔性航天器动力学建模及模型降阶研究[J]. 计算机仿真,2011, 28(6):80-83, 108. YU S J, FENG Z W, ZHANG Q B. Research on dynamics modeling and model reduction of flexible spacecraft[J]. Computer Simulation, 2011, 28(6):80-83, 108(in Chinese). [24] 王钦. 航天器姿态和挠性附件动力学分析与仿真验证研究[D]. 长沙:国防科技大学,2011:16-33. WANG Q. Dynamics analysis and simulation verification of spacecraft attitude and flexible appendages[D]. Changsha:National University of Defense Science and Technology, 2011:16-33(in Chinese). [25] 罗文. 太阳翼卫星的刚柔耦合动力学建模[D]. 哈尔滨:哈尔滨工业大学,2015:22-36. LUO W. Rigid flexible coupling dynamics modeling of solar wing satellite[D]. Harbin:Harbin Institute of Technology, 2015:22-36(in Chinese). [26] 陶然. 挠性自旋卫星角动量转移过程分析与仿真[D]. 哈尔滨:哈尔滨工业大学,2017:21-30. TAO R. Analysis and Simulation of angular momentum transfer process of flexible spin satellite[D]. Harbin:Harbin Institute of Technology, 2017:21-30(in Chinese). [27] 刘敏,徐世杰,韩潮. 挠性航天器的退步直接自适应姿态跟踪控制[J]. 航空学报,2012, 33(9):1697-1705. LIU M, XU S J, HAN C. Direct adaptive attitude tracking control for flexible spacecraft based on backstepping method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1697-1705(in Chinese). [28] PIETRO F D, MIGONI G, KOFMAN E. Improving a linearly implicit quantized state system method[C]//Winter Simulation Conference.Piscataway:IEEE Press, 2016:1084-1095. |