[1] LAPPAS V J, STEYN W H, UNDERWOOD C I. Torque amplification of control moment gyros[J]. Electronics Letters, 2002, 38(15):837-839. [2] TANIWAKI S, OHKAMI Y. Precision attitude control of spacecraft with control moment gyros[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit. Reston:AIAA, 2006. [3] Marshall Space Flight Center. The Proceedings of the committee to investigate the SKYLAB CMG No.2 orbital anomalies:NASA-N79-76857[R]. Washington, D.C.:NASA, 1974. [4] GURRISI C, SEIDEL R, DICKERSON S, et al. Space station control moment gyroscope lessons learned:NASA-CP-2010-216272[R]. Washington,D.C.:NASA, 2010. [5] 王正青. 面向实战摸清底数——谈复杂环境与边界条件下的武器装备试验鉴定[J]. 现代防御技术, 2019, 47(5):1-7. WANG Z Q. Combat oriented base performance testing:testing identification of weapon system in complex scenes and boundary conditions[J]. Modern Defence Technology, 2019, 47(5):1-7(in Chinese). [6] 李阿楠, 廖学军. 我军开展武器装备作战试验鉴定的思考[J]. 装备学院学报, 2016, 27(1):107-110. LI A N, LIAO X J. Reflection on appraisal on PLA'S weapons and equipments operational test[J]. Journal of Equipment Academy, 2016, 27(1):107-110(in Chinese). [7] 赵继广, 柯宏发, 康丽华, 等. 武器装备作战试验发展与研究现状分析[J]. 装备学院学报, 2015, 26(4):113-119. ZHANG J G, KE H F, KANG L H, et al. Development and current researches of weapon equipment operational test[J]. Journal of Equipment Academy, 2015, 26(4):113-119(in Chinese). [8] 宋燕. 基于失效边界域的耐久性渐变退化分析与仿真研究[D]. 北京:北京航空航天大学, 2014. SONG Y. The analysis and simulation of durability gradient degradation based on fuzzy failure domain[D]. Beijing:Beihang University, 2014(in Chinese). [9] 徐子健, 南宫自军, 李炳蔚, 等. 电磁继电器冲击失效边界研究[J]. 兵器装备工程学报, 2020,41(9):51-57,74. XU Z J, NANGONG Z J, LI B W, et al. Research on failure boundary of electromagnetic relay[J]. Journal of Ordnance Equipment Engineering, 2020,41(9):51-57,74(in Chinese). [10] United States Air Force. Design, construction, and testing requirements for one of a kind space equipment:DOD-HDBK-343[S]. Washington, D.C.:United States Air Force, 1986. [11] Department of Defense of United States. Director, operational test and evaluation FY 2017 annual report[R]. Washington, D.C.:Department of Defense of United States, 2017. [12] Department of Defense of United States. Director, operational test and evaluation FY 2018 annual report[R]. Washington, D.C.:Department of Defense of United States, 2018. [13] Department of Defense of United States. Director, operational test and evaluation FY 2019 annual report[R]. Washington,D.C.:Department of Defense of United States, 2019. [14] 姚泽民,黄首清,刘大志, 等. 热-声-振耦合效应对薄壁叶片结构应变影响的试验研究[J]. 航天器环境工程, 2019, 36(4):363-368. YAO Z M, HUANG S Q, LIU D Z, et al. Experimental study of the effect of thermal-acoustics-vibration coupling on the strain of thin-blade structure[J]. Spacecraft Environment Engineering, 2019, 36(4):363-368(in Chinese). [15] 虎刚, 徐映霞, 吴金涛. 200 Nms单框架控制力矩陀螺的热平衡试验[J]. 空间控制技术与应用, 2008, 34(1):27-30. HU G, XU Y X, WU J T. Thermal balance test on a 200 Nms single-gimbal CMG[J]. Aerospace Control and Application, 2008, 34(1):27-30(in Chinese). [16] 魏大忠, 李刚, 伏蓉, 等. 天宫一号单框架控制力矩陀螺研制及长寿命转子轴系技术[J]. 中国科学:技术科学, 2014, 44(3):261-268. WEI D Z, LI G, FU R, et al. Design of SGCMG and long life rotor bearing system technology in Tiangong-1[J]. Scientia Sinica Technologica, 2014, 44(3):261-268(in Chinese). [17] LIU S W, HUANG S Q, LU L, et al. Thermal vacuum and swivel table tests of a CMG and fault mechanism analysis[J]. Journal of Aerospace Engineering, 2018, 31(5):04018069-1-12. [18] 王雅梦. 控制力矩陀螺轴承组件温度场分析[D]. 洛阳:河南科技大学, 2015:35-59. WANG Y M. Analysis of temperature field of bearing assembly for control moment gyroscope[D]. Luoyang:Henan University of Science and Technology, 2015:35-59(in Chinese). [19] 张俊红,张桂昌,何振鹏, 等. 基于正交实验和神经网络的轴系主轴承润滑特性优化[J]. 内燃机学报, 2011, 29(5):461-467. ZHANG J H, ZHANG G C, HE Z P, et al. Optimization of crankshaft-bearing lubricating characteristics based on orthogonal experiment and neural network[J]. Transactions of CSICE, 2011, 29(5):461-467(in Chinese). [20] 单钧麟, 汪立新, 秦伟伟, 等. 控制力矩陀螺自平衡车粒子群优化LQR控制[J]. 兵器装备工程学报, 2019, 40(12):100-104. DAN J L, WANG L X, QIN W W, et al. Particle swarm optimization LQR control of self-balancing vehicles with control moment gyro[J]. Journal of Ordnance Equipment Engineering, 2019, 40(12):100-104(in Chinese). [21] MACKUNIS W, LEVE F, PATRE P, et al. Adaptive neural network-based satellite attitude control in the presence of CMG uncertainty[J]. Aerospace Science and Technology, 2016, 54(7):218-228. [22] 李海涛, 林杰, 韩邦成. 基于ESO的DGVSCMG双框架伺服系统不匹配扰动抑制[J]. 航空学报, 2018, 39(4):421641. LI H T, LIN J, HAN B C. Mismatched disturbance rejection of double gimbal servo system in variable speed control moment gyroscope using a novel ESO method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):421641(in Chinese). [23] 飞思科技产品研发中心. 神经网络理论与MATLAB 7实现[M]. 北京:电子工业出版社, 2005:100-105. FECIT Technological Product Research Center. Neural network theory and implementation of MATLAB 7[M]. Beijing:Publishing House of Electronics Industry, 2005:100-105(in Chinese). |