[1] YANG H, XU W, ZHAO J, et al. Predicting the probability of ice storm damages to electricity transmission facilities based on ELM and copula function[J]. Neurocomputing, 2011, 74(16):2573-2581. [2] 杨斌. 输电线路防覆冰用超疏水自清洁涂料的制备[D]. 重庆:重庆大学, 2011:1-2. YANG B. Preparation of a super-hydrophobic and self-cleaning coating for an anti-icing transmission line[D]. Chongqing:Chongqing University, 2011:1-2(in Chinese). [3] 毛昆朋, 潘帅锋, 陈枫, 等. 金属表面抗结冰研究进展[J]. 科技通报, 2013, 29(11):1-6. MAO K P, PAN S F, CHEN F, et al. Research progress on anti-icing modification of metals surfaces[J]. Bulletin of Science and Technology, 2013, 29(11):1-6(in Chinese). [4] 王冠, 张德远, 陈华伟. 飞机防冰-从传统到仿生的发展[J]. 工业技术创新, 2014, 1(2):241-250 WANG G, ZHANG D Y, CHEN H W. The development of aircraft anti-icing-from traditional to bionic[J]. Industrial Technology Innovation, 2014, 1(2):241-250(in Chinese). [5] 周家希. 大型飞机防冰系统研制发展研究[J]. 中国战略新兴产业, 2017(24):47. ZHOU J X, Research and development of large aircraft anti-icing system[J]. China Strategic Emerging Industry, 2017(24):47(in Chinese). [6] 胡宗浩, 张明, 苏亚东. 多功能微纳表面在飞机上的应用需求与发展方向[J]. 飞机设计, 2019, 39(1):76-80. HU Z H, ZAHNG M, SU Y D. Briefly analyzing the equirement and development of multifunctional micro-nano surface on aircraft[J]. Aircraft Design, 2019, 39(1):76-80(in Chinese). [7] 龙江游, 吴颖超, 龚鼎为, 等. 飞秒激光制备超疏水铜表面及其抗结冰性能[J]. 中国激光, 2015, 42(7):164-171. LONG J Y, WU Y C, GONG D W, et al. Femtosecond laser fabricated superhydrophobic copper surfaces and their anti-icing properties[J]. Chinese Journal of Lasers, 2015, 42(7):164-171(in Chinese). [8] 王津, 杨辉, 王莉平, 等. 防冰疏水微结构表面的设计[J]. 航空学报, 2017, 38(S1):41-48. WANG J, YANG H, WANG L P, et al. Surface design for anti-icing and hydrophobic micro-structures[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):41-48(in Chinese). [9] 薛磊, 于竞尧, 马学胜, 等. 飞秒激光制备铜微纳结构表面的润湿及抗结冰特性研究[J]. 航空制造技术, 2018, 61(12):74-79. XUE L, YU J Y, MA X S, et al. Femtosecond laser fabricated wetting copper surfaces and their anti-icing properties[J]. Aeronautical Manufacturing Technology, 2018, 61(12):74-79(in Chinese). [10] EBERLE P, TIWARI M K, MAITRA T, et al. Rational nanostructuring of surfaces for extraordinary icephobicity[J]. Nanoscale, 2014, 6(9):4874-4881. [11] VERCILLO V, TONNICCHIA S, ROMANO J M, et al. Design rules for laser-treated icephobic metallic surfaces for aeronautic applications[J]. Advanced Functional Materials, 2020,30(16):1910268. [12] YOUNG T. Experiments and calculations relative to physical optics[R]. London:Royal Society of London, 1804. [13] WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry Research., 1936, 28(8):988-994. [14] CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944,40:546-551. [15] 于竞尧. 飞秒激光诱导微纳结构表面的防覆冰性能研究[D]. 长春:长春理工大学, 2018. 11-12 YU J Y. Study on anticing from micro-nano structuresurface induced by femtosecond laser[D]. Changchun:Changchun University of Science and Technology,2018. 11-12(in Chinese). [16] DARMANIN T, GUITTARD F. Recent advances in the potential applications of bioinspired superhydrophobic materials[J]. Journal of Materials Chemistry A, 2014, 2:16319-16359. [17] GUO P, ZHENG Y, WEN M, et al. Icephobic/anti-icing properties of micro/nanostructured surfaces[J]. Advanced Materials, 2012, 24(19):2642-2648. [18] MEULER A J, MCKINLEY G H, COHEN R E. Exploiting topographical texture to impart icephobicity[J]. ACS Nano, 2010, 4(12):7048-7052. [19] BOREYKO J B, SRIJANTO B R, NGUYEN T D, et al. Dynamic defrosting on nanostructured superhydrophobic surfaces[J]. Langmuir:the ACS Journal of Surfaces & Colloids, 2013, 29(30):9516-9524. [20] KULINICH S A, FARHADI S, NOSE K, et al. Superhydrophobic surfaces:are they really ice-repellent?[J]. Langmuir the Acs Journal of Surfaces & Colloids, 2011, 27(1):25-9. [21] CHEN J, LIU J, HE M, et al. Superhydrophobic surfaces cannot reduce ice adhesion[J]. Applied Physics Letters, 2012, 101(11):111603. [22] MICHAEL A. HENDERSON. An HREELS and TPD study of water on TiO2 (110):the extent of molecular versus dissociative adsorption[J]. Surface Science, 1996, 355:151-166. [23] WANG R, SAKAI N, FUJISHIMA A, et al. Studies of surface wettability conversion on TiO2 single-crystal surfaces[J]. Journal of Physical Chemistry B, 1999, 103(12):2188-2194. [24] PANT R, SINGHA S, BANDYOPADHYAY A, et al. Investigation of static and dynamic wetting transitions of UV responsive tunable wetting surfaces[J]. Applied Surface Science, 2014, 292. 777-781. [25] YANG Z, LIU X, TIAN Y. Insights into the wettability transition of nanosecond laser ablated surface under ambient air exposure[J]. Journal of Colloid and Interface Science, 2018, 533, 268-277. [26] LIU P, CAO L, ZHAO W. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons[J]. Applied Surface Science, 2015, 324, 576-583. [27] 黄玲艳. 表面特性对冷壁面结霜过程影响的研究[D]. 北京:北京工业大学, 2011:41-64 HUANG L Y. A study on the effect of cold surface characteristics on frost formation[D]. Beijing:Beijing University of Technology, 2011:41-64(in Chinese). [28] 许旺发. 冷面结霜机理及其抑制对策的实验研究[D]. 北京:清华大学, 2004:36-37 XU W F. Experimental studies on mechanism of formation on cold surfaces and its control[D]. Beijing:Tsinghua University, 2004:36-37(in Chinese). [29] 王伶俐. 表面润湿性对结霜初期液滴冻结及融霜排液的影响[D]. 北京:清华大学, 2017:35 WANG L L. Effect of surface wettability on droplets freezing in the initial stage of frosting and defrosting process[D]. Beijing:Tsinghua University, 2017:35(in Chinese). |