[1] MERCHANT M E. Mechanics of the metal cutting process. I. orthogonal cutting and a type 2 chip[J]. Journal of Applied Physics, 1945, 16(5):267-275. [2] HILL R. The mechanics of machining:A new approach[J]. Journal of the Mechanics and Physics of Solids, 1954, 3(1):47-53. [3] LEE E. The theory of plasticity applied to a problem of machining[J]. Journal of Applied Mechanics, 1951, 18:405. [4] LIU R, SALAHSHOOR M, MELKOTE S N, et al. A unified material model including dislocation drag and its application to simulation of orthogonal cutting of OFHC copper[J]. Journal of Materials Processing Technology, 2015, 216:328-338. [5] PAN Z P, SHIH D S, TABEI A, et al. Modeling of Ti-6Al-4V machining force considering material microstructure evolution[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5-8):2673-2680. [6] WU H, MA J F, LEI S T. FEM prediction of dislocation density and grain size evolution in high-speed machining of Al6061-T6 alloy using microgrooved cutting tools[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9-12):4211-4227. [7] DING H T, SHEN N G, SHIN Y C. Modeling of grain refinement in aluminum and copper subjected to cutting[J]. Computational Materials Science, 2011, 50(10):3016-3025. [8] BAMMANN D J, CHIESA M L, JOHNSON G C. Modeling large deformation and failure in manufacturing processes[J]. Theoretical and Applied Mechanics, 1996, 9:359-376. [9] GUO Y B, WEN Q, WOODBURY K A. Dynamic material behavior modeling using internal state variable plasticity and its application in hard machining simulations[J]. Journal of Manufacturing Science and Engineering, 2006, 128(3):749-759. [10] FOLLANSBEE P S, KOCKS U F. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable[J]. Acta Metallurgica, 1988, 36(1):81-93. [11] DING H T, SHIN Y C. Multi-physics modeling and simulations of surface microstructure alteration in hard turning[J]. Journal of Materials Processing Technology, 2013, 213(6):877-886. [12] TAO J F, QIN C J, XIAO D Y, et al. A pre-generated matrix-based method for real-time robotic drilling chatter monitoring[J]. Chinese Journal of Aeronautics, 2019, 32(12):2755-2764. [13] ESTRIN Y, TOTH L S, MOLINARI A, et al. A dislocation-based model for all hardening stages in larges strain deformation[J]. Acta Materialia, 1998, 46(15):5509-5522. [14] ARISOY Y M, ÖZEL T. Prediction of machining induced microstructure in Ti-6Al-4V alloy using 3-D FE-based simulations:Effects of tool micro-geometry, coating and cutting conditions[J]. Journal of Materials Processing Technology, 2015, 220:1-26. [15] 杜茂华, 程正, 王神送,等. 损伤演化对Ti6Al4V高速切削仿真结果的影响[J]. 航空学报, 2019, 40(7):422787. DU M H, CHENG Z, WANG S S, et al. Effects of damage evolution on simulation results of hign speed maching TiAl4V[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(7):422787(in Chinese). [16] JAFARIAN F, MASOUDI S, UMBRELLO D, et al. New strategies for improvement of numerical model accuracy in machining of nickel-based alloy[J]. Simulation Modelling Practice and Theory, 2019, 94:134-148. [17] KOCKS U F. Laws for work-hardening and low-temperature creep[J]. Journal of Engineering Materials and Technology, 1976, 98(1):76-85. [18] OXLEY P L B, SHAW M C. Mechanics of machining:an analytical approach to assessing machinability[M]. London:Ellis Horwood Limited, 1990. [19] WANG Z G. High-speed milling of titanium alloys:Modeling and optimization[D]. Singapore:National University of Singapore, 2005. [20] ALTINTAS Y, BER A A. Manufacturing automation:metal cutting mechanics, machine tool vibrations, and CNC design[M]. New York:Cambridge University Press, 2001. [21] PANG L. Analytical modeling and simulation of metal cutting forces for engineering alloys[D]. Oshawa:University of Ontario Institute of Technology, 2012. [22] WALDORF D J, DEVOR R E, KAPOOR S G. A slip-line field for ploughing during orthogonal cutting[J]. Journal of Manufacturing Science & Engineering, 1998, 120(4):693-699. [23] SU J C. Residual stress modeling in machining processes[D]. Atlanta:Georgia Institute of Technology, 2006. [24] ASTAKHOV V P, OSMAN M O M, HAYAJNEH M T. Re-evaluation of the basic mechanics of orthogonal metal cutting:velocity diagram, virtual work equation and upper-bound theorem[J]. International Journal of Machine Tools and Manufacture, 2001, 41(3):393-418. [25] ZHOU F J, WANG X L, HU Y J, et al. Modeling temperature of non-equidistant primary shear zone in metal cutting[J]. International Journal of Thermal Sciences, 2013, 73:38-45. [26] ATMANI Z, HADDAG B, NOUARI M, et al. Combined microstructure-based flow stress and grain size evolution models for multi-physics modelling of metal machining[J]. International Journal of Mechanical Sciences, 2016, 118:77-90. [27] 余勇, 潘晓霞. Frank-Read位错源的细观级模拟[J]. 金属学报, 2009, 45(11):1309-1313. YU Y, PAN X X. Meso-scale simulation of frank-read dislocation sources[J]. Acta Metallurgica Sinica, 2009, 45(11):1309-1313(in Chinese). [28] 刘具龙, 张璧, 白倩, 等. 钛合金铣削刀具/工件接触区域温度预测[J]. 航空学报, 2018, 39(12):422128. LIU J L, ZHAG B, BAI Q, et al. Temperature prediction of tool/workpiece contact zone in titanium milling[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(12):422128(in Chinese). [29] SHAN C W, ZHANG X, SHEN B, et al. An improved analytical model of cutting temperature in orthogonal cutting of Ti6Al4V[J]. Chinese Journal of Aeronautics, 2019, 32(3):759-769. [30] ORRA K, CHOUDHURY S K. Mechanistic modelling for predicting cutting forces in machining considering effect of tool nose radius on chip formation and tool wear land[J]. International Journal of Mechanical Sciences, 2018, 142:255-268. [31] LI H Z, WANG H J, LIANG X P, et al. Hot deformation and processing map of 2519A aluminum alloy[J]. Materials Science and Engineering:A, 2011, 528(3):1548-1552. [32] JAVIDIKIA M, SADEGHIFAR M, SONGMENE V, et al. On the impacts of tool geometry and cutting conditions in straight turning of aluminum alloys 6061-T6:An experimentally validated numerical study[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(9):4547-4565. |