[1] 陈劲操, 周彦煌, 郎明君. 药温测量中环境温度的作用及精确测定[J]. 弹道学报,2001,13(3):33-37. CHEN J C, ZHOU Y H, LANG M J. Ambient temperature action and precision detection in chamber temperature measurement[J]. Journal of Ballistics, 2001, 13(3):33-37(in Chinese). [2] 常武军, 鞠玉涛, 王蓬勃. HTPB推进剂脱湿与力学性能的相关性研究[J]. 兵工学报,2012,33(3):261-266. CHANG W J, JU Y T, WANG P B. Research on correlation between dewetting and mechanical property of HTPB propellant[J]. Acta Armamentarii, 2012, 33(3):261-266(in Chinese). [3] 韩龙, 许进升, 周长省. HTPB/IPDI复合固体推进剂细观界面率相关参数的反演识别研究[J]. 含能材料, 2016(10):928-935. HAN L, XU J S, ZHOU C S. Inverse identification of the rate-dependent micro interface parameters of HTPB/IPDI composite propellant[J]. Chinese Journal of Energetic Materials, 2016(10):928-935(in Chinese). [4] KENDALL M J, SIVIOUR C R. Experimentally simulating high rate composite deformation in tension and compression:polymer bonded explosive simulant[J]. Journal of Dynamic Behavior of Materials, 2015,1(2):114-123. [5] 胡少青. NEPE推进剂的粘-超弹本构模型及其应用研究[D]. 南京:南京理工大学, 2015:59-66. HU S Q. A visco-hyperelastic constitutive model for NEPE propellant and its application[D]. Nanjing:Nanjing University of Science and Technology, 2015:59-66(in Chinese). [6] 沈超敏, 李斯宏. 颗粒材料破碎演化路径细观热力学机制[J]. 力学学报,2019,51(1):16-25. SHEN C M, LI S H. Evolution path for the particle breakage of granular materials:A micromechanical and thermodynamic insight[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):16-25(in Chinese). [7] RICHETON J, AHZI S, VECCHIO K S, et al. Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates[J]. International Journal of Solids and Structures, 2007, 44(24):7938-7954. [8] JOHNSEN J, CLAUSEN A H, GRYTTEN F, et al. A thermo-elasto-viscoplastic constitutive model for polymers[J]. Journal of the Mechanics and Physics of Solids, 2019, 124:681-701. [9] 刘志林, 王晓鸣, 姚文进, 等. 底排药的高应变率动态响应实验和仿真[J]. 含能材料, 2014, 22(4):529-534. LIU Z L, WANG X M, YAO W J, et al. Numerical simulation and mechanical behavior of base bleed grain at high strain rate[J]. Chinese Journal of Energetic Materials, 2014, 22(4):529-534(in Chinese). [10] 武智慧, 牛公杰, 郝玉风, 等. HTPB复合底排药损伤本构模型研究[J]. 推进技术, 2019, 40(12):2848-2855. WU Z H, NIU G J, HAO Y F, et al. Research on damaged constitutive model for HTPB composite base bleed grain[J]. Journal of Propulsion Technology, 2019, 40(12):2848-2855(in Chinese). [11] 武智慧, 牛公杰, 郝玉风, 等. HTPB复合底排药压缩屈服应力模型研究[J]. 力学学报, 2019, 51(6):1810-1819. WU Z H, NIU G J, HAO Y F, et al. Research on modeling of compressive yield behavior for HTPB composite base bleed grain[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6):1810-1819(in Chinese). [12] ABDEL-WAHAB A A, ATAYA S, SILBERSCHMIDT V V. Temperature-dependent mechanical behaviour of PMMA:experimental analysis and modeling[J]. Polymer Testing, 2017, 58:86-95. [13] BOYCE M C, SOCRATE S, LLANA P G. Constitutive model for the finite deformation stress-strain behavior of poly(ethylene terephthalate) above the glass transition[J]. Polymer, 2000,41(6):2183-2201. [14] CHO H. Constitutive modeling of high strain rate elastomeric polymers:Mechanics of large deformation behavior of elastomeric copolymers:Resilience, dissipation, and constitutive modeling. elastomeric polymers with high rate sensitivity:Applications in blast, shock wave, and penetration mechanics[D]. 2015:115-137. [15] SRIVASTAVA V, CHESTER S A, NICOLI M A, et al.A thermo-mechanically-coupled large-deformation theory for amorphous polymers in a temperature range which spans their glass transition[J]. International Journal of Plasticity, 2010, 26(8):1138-1182. [16] OKEREKE M I, LE C H, BUCKLEY C P. A new constitutive model for prediction of impact tests response of polypropylene[J]. EPJ Web of Conferences, 2012, 26:04031-04036. [17] DREISTADT C, BONNET A, CHEVRIER P, et al. Experimental study of the polycarbonate behaviour during complex loadings and comparison with the Boyce, Parks and Argon model predictions[J]. Materials and Design, 2009, 30(8):3126-3140. [18] 张泷, 刘耀儒, 杨强, 等. 考虑损伤的内变量黏弹-黏塑性本构方程[J]. 力学学报, 2014, 46(4):572-581. ZHANG L, LIU Y R, YANG Q, et al. An internal state variable viscoelastic-viscoplastic constitutive equation with damage[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4):572-581(in Chinese). [19] WANG J, XU Y J, ZHANG W H, et al. A damage-based elastic-viscoplastic constitutive model for amorphous glassy polycarbonate polymers[J]. Materials and Design, 2016, 97:519-531. [20] HUND J, NAUMANN J, SEELIG T. An experimental and constitutive modeling study on the large strain deformation and fracture behavior of PC/ABS blends[J]. Mechanics of Materials, 2018, 124:132-142. [21] CHEN F, BALIEU R, KRINGOS N. Thermodynamics-based finite strain viscoelastic-viscoplastic model coupled with damage for asphalt material[J]. International Journal of Solids and Structures, 2017, 120:61-73. [22] BALIEU R, LAURO F, BENNANI B, et al. A fully coupled elastoviscoplastic damage model at finite strains for mineral filled semi-crystalline polymer[J]. International Journal of Plasticity, 2013, 51:241-270. [23] ONIFADE I, BIRGISSON B, BALIEU R. Energy-based damage and fracture framework for viscoelastic asphalt concrete[J]. Engineering Fracture Mechanics, 2015,145:67-85. [24] 刘新东, 郝际平. 连续介质损伤力学[M]. 北京:国防工业出版社, 2011:155-182. LIU X D, HAO J P. Continuum damage mechanics[M]. Beijing:National Defense Industry Press, 2011:155-182(in Chinese). [25] 勒迈特. 损伤力学教程[M]. 倪金刚, 陶春虎, 李松年, 译. 北京:科学出版社,1996:122-144. LEMAITRE J. A course on damage mechanics[M]. NI J G, TAO C H, LI S N, translated. Beijing:Science Press, 1996:122-144(in Chinese). [26] 王礼立.应力波基础[M]. 北京:国防工业出版社, 2010:148-153. WANG L L. Foundation of stress wave[M]. Beijing:National Defense Industry Press, 2010:148-153(in Chinese). [27] POVOLO F, HERMIDA E B. Phenomenological description of strain rate and temperature-dependent yield stress of PMMA[J]. Journal of Applied Polymer Science, 1995, 58(1):55-68. [28] KRAIRI A, DOGHRI I. A thermodynamically-based constitutive model for thermoplastic polymers coupling viscoelasticity, viscoplasticity and ductile damage[J]. International Journal of Plasticity, 2014, 60:163-181. [29] AL-RUB R K A, TEHRANI A H, DARABI M K. Application of a large deformation nonlinear-viscoelastic viscoplastic viscodamage constitutive model to polymers and their composites[J]. International Journal of Damage Mechanics, 2015, 24(2):198-224. [30] 童心, 李龙, 马赛尔, 等. 冲击载荷下HTPB推进剂的热耗散[J]. 爆炸与冲击, 2018, 38(6):1255-1261. TONG X, LI L, MA S E, et al. Heat dissipation of HTPB propellant under impact loading[J]. Explosion and Shock Waves, 2018,38(6):1255-1261(in Chinese). [31] SAFARI K H, ZAMANI J, GUEDES R M, et al. The effect of heat development on the constitutive modeling of amorphous polymers[J]. Mechanics of Time-Dependent Materials, 2016, 20(1):45-64. |