[1] 许进升. 复合推进剂热粘弹性本构模型实验及数值仿真研究[D]. 南京:南京理工大学, 2013:1. XU J S. Experimental and numerical research on thermo-viscoelastic constitutive model of composite propellant[D]. Nanjing:Nanjing University of Science & Technology, 2013:1(in Chinese). [2] 王建祥, 陈建康, 白树林. 基于损伤演化的共混/填充高聚物体系本构关系研究进展[J]. 复合材料学报, 2002, 19(6):1-7. WANG J X, CHEN J K, BAI S L. Advances in study of constitutive relations of blended/filled polymeric composites considering damage evolution[J]. Acta Materiae Compositae Sinica, 2002, 19(6):1-7(in Chinese). [3] XU J S, CHEN X, WANG H L, et al. Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J]. International Journal of Solids and Structures, 2014, 51(18):3209-3217. [4] YUN K S, PARK J B, JUNG G D, et al. Viscoelastic constitutive modeling of solid propellant with damage[J]. International Journal of Solids and Structures, 2016, 80:118-127. [5] PARK S W, SCHAPERY R A. A viscoelastic constitutive model for particulate composites with growing damage[J]. International Journal of Solids and Structures, 1997, 34(8):931-947. [6] OZUPEK S, BECKER E B. Constitutive equations for solid propellants[J]. Journal of Engineering Materials and Technology, 1997, 119(2):125-132. [7] JUNG G D, YOUN S K. A nonlinear viscoelastic constitutive model of solid propellant[J]. International Journal of Solids and Structures, 1999, 36(25):3755-3777. [8] JUNG G D, YOUN S K, KIM B K. A three-dimensional nonlinear viscoelastic constitutive model of solid propellant[J]. International Journal of Solids and Structures, 2000, 37(34):4715-4732. [9] CHEN J K, HUANG Z P, MAI Y W. Constitutive relation of particulate-reinforced viscoelastic composite materials with debonded microvoids[J]. Acta Materialia, 2003, 51(12):3375-3384. [10] CHEN J K, HUANG Z P, YUAN M. A constitutive theory of particulate-reinforced viscoelastic materials with partially debonded microvoids[J]. Computational Materials Science, 2008, 41(3):334-343. [11] TOHGO K, ITOH Y, SHIMAMURA Y. A constitutive model of particulate-reinforced composites taking account of particle size effects and damage evolution[J]. Composites Part A:Applied Science and Manufacturing, 2010, 41(2):313-321. [12] XU F, ARAVAS N, SOFRONIS P. Constitutive modeling of solid propellant materials with evolving microstructural damage[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5):2050-2073. [13] HUR J Y, PARK J B, JUNG G D, et al. Enhancements on a micromechanical constitutive model of solid propellant[J]. International Journal of Solids and Structures, 2016, 87:110-119. [14] 彭威, 郑坚, 白鸿柏, 等. 复合推进剂微裂纹损伤本构模型研究[J]. 固体火箭技术, 2003, 26(1):33-37. PENG W, ZHENG J, BAI H B, et al. Study on micro-cracking damage constitutive model of HTPB composite solid propellant[J]. Journal of Solid Rocket Technology, 2003, 26(1):33-37(in Chinese). [15] TUSSIWAND G S, SAOUMA V, TERZENBACH R, et al. Fracture mechanics of composite solid rocket propellant grains:Material testing[J]. Journal of Propulsion and Power, 2009, 25(1):60-73. [16] ABDEL-TAWAB T K, WELTSMAN Y J. A coupled viscoelasticity/damage model with application to swirl-mat composites[J]. International Journal of Damage Mechanics, 1998, 7(4):351-380. [17] GRECHKA V, KACHANOV M. Effective elasticity of fractured rocks:A snapshot of the work in progress[J]. Geophysics, 2006, 71(6):45-58. [18] DUBOIS F, CHAZAL C, PETIT C. Modelling of crack growth initiation in a linear viscoelastic material[J]. Journal of Theoretical & Applied Mechanics, 1999, 37(2):207-222. [19] 任中俊, 万玲. 复杂应力下脆性岩石材料的微裂纹损伤特性[J]. 应用力学学报, 2013, 30(1):7-12. REN Z J, WAN L. Investigation of the damage for microcracks weakened brittle rocks subjected to arbitrary three-dimensional stress[J]. Chinese Journal of Applied Mechanics, 2013, 30(1):7-12(in Chinese). [20] FRANCOIS B, DASCALU C. A two-scale time-dependent damage model based on non-planar growth of micro-cracks[J]. Journal of the Mechanics & Physics of Solids, 2010, 58(11):1928-1946. [21] SEVOSTIANOV I, KACHANOV M. On elastic compliances of irregularly shaped cracks[J]. International Journal of Fracture, 2002, 114(3):245-257. [22] SCHAPERY R A. A theory of crack initiation and growth in viscoelastic media. Part I. Theoretical development[J]. International Journal of Fracture, 1975, 11(1):141-159. [23] PERSSON B N, BRENER E A. Crack propagation in viscoelastic solids[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2005, 71(3):036123. [24] SCHAPERY R A. A theory of crack initiation and growth in viscoelastic media. Part Ⅱ. Approximate methods of analysis[J]. International Journal of Fracture, 1975, 11(3):369-388. [25] MULIANA A, KHAN K A. A time-integration algorithm for thermo-rheologically complex polymers[J]. Computational Materials Science, 2008, 41(4):576-588. [26] 顾志旭, 郑坚, 彭威, 等. 复合固体推进剂黏弹性微裂纹损伤本构模型[J]. 复合材料学报, 2018,35(5):1203-1210. GU Z X, ZHENG J, PENG W, et al. A viscoelastic constitutive model of solid composite propellants with micro-cracking damage[J]. Acta Materiae Compositae Sinica, 2018, 35(5):1203-1210(in Chinese). [27] MURAKAMI S. Continuum damage mechanics:A continuum mechanics approach to the analysis of damage and fracture[M]. Dordrech:Springer, 2012:44-48. |