[1] 岳彩旭, 蔡春彬, 黄翠, 等. 切削加工过程有限元仿真研究的最新进展[J]. 系统仿真学报, 2016, 28(4):815-825. YU C X, CAI C B, HUANG C, et al. Recent advances in finite element simulation of machining processes[J]. Journal of System Simulation, 2016, 28(4):815-825(in Chinese). [2] UMBRELLO D, M'SAOUBI R, OUTEIRO J C. The influence of Johnson-Cook material constants on finite element simulation of machining of AISI 316L steel[J]. International Journal of Machine Tools and Manufacture, 2007, 47(3-4):462-470. [3] 刘战强, 张克国. JC本构参数对绝热剪切影响的敏感性分析[J]. 航空学报, 2011, 32(11):2140-2146. LIU Z Q, ZHANG K G. Sensitivity analysis of Johnson-Cook material constants on adiabatic shear[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(11):2140-2146(in Chinese). [4] SCHULZE V, ZANGER F. Numerical analysis of the influence of Johnson-Cook material parameters on the surface integrity of Ti-6Al-4V[J]. Procedia Engineering, 2011, 19:306-311. [5] DUCOBU F, RIVIÈRE-LORPHÈVRE E, FILIPPI E. Material constitutive model and chip separation criterion influence on the modeling of Ti6Al4V machining with experimental validation in strictly orthogonal cutting condition[J]. International Journal of Mechanical Sciences, 2016, 107:136-149. [6] WANG B, LIU Z Q. Investigations on the chip formation mechanism and shear localization sensitivity of high-speed machining Ti6Al4V[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(5-8):1065-1076. [7] WANG B, LIU Z Q. Shear localization sensitivity analysis for Johnson-Cook constitutive parameters on serrated chips in high speed machining of Ti6Al4V[J]. Simulation Modelling Practice and Theory, 2015, 55:63-76. [8] 《中国航空材料手册》编辑委员会. 中国航空材料手册第4卷:钛合金,铜合金[M]. 第2版. 北京:中国标准出版社, 2001:107-126. Editorial Committee of China Aeronautical Materials Handbook. China aeronautical materials handbook Vol.4:Titanium alloy, copper alloy[M]. 2nd ed. Beijing:Stand Press China, 2001:107-126(in Chinese). [9] JOHNSON G R. A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures[C]//Proceeding of the seventh international symposium on ballistics. Hague, Netherlands, 1983:541-547. [10] LEE W S, LIN C F. High-temperature deformation behaviour of Ti6Al4V alloy evaluated by high strain-rate compression tests[J]. Journal of Materials Processing Technology, 1998, 75(1-3):127-136. [11] LEE W S, LIN C F. Plastic deformation and fracture behaviour of Ti-6Al-4V alloy loaded with high strain rate under various temperatures[J]. Materials Science and Engineering:A, 1998, 241(1-2):48-59. [12] MEYER JR H W, KLEPONIS D S. Modeling the high strain rate behavior of titanium undergoing ballistic impact and penetration[J]. International Journal of Impact Engineering, 2001, 26(1-10):509-521. [13] CHEN G, REN C Z, YANG X Y, et al. Finite element simulation of high-speed machining of titanium alloy (Ti-6Al-4V) based on ductile failure model[J]. The International Journal of Advanced Manufacturing Technology, 2011, 56(9-12):1027-1038. [14] LI L, HE N. A FEA study on mechanisms of saw-tooth chip deformation in high speed cutting of Ti-6-Al-4V alloy[C]//Fifth international conference on high speed machining (HSM). Metz, France, 2006:14-16. [15] LESUER D. Experimental investigation of material models for Ti-6Al-4V and 2024-T3:DOT/FAA/AR-00/25[R]. Livermore:Lawrence Livermore National Laboratory, 1999. [16] ZHANG Y C, OUTEIRO J C, MABROUKI T. On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting[J]. Procedia CIRP, 2015, 31:112-117. [17] CHEN G, REN C Z, YU W, et al. Application of genetic algorithms for optimizing the Johnson-Cook constitutive model parameters when simulating the titanium alloy Ti-6Al-4V machining process[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2012, 226(8):1287-1297. [18] ZOREV N N. Inter-relationship between shear processes occurring along tool face and shear plane in metal cutting[J]. International Research in Production Engineering, 1963, 49:143-152. [19] BUDAK E, OZLU E. Development of a thermomechanical cutting process model for machining process simulations[J]. CIRP Annals-Manufacturing Technology, 2008, 57(1):97-100. [20] UMBRELLO D. Finite element simulation of conventional and high speed machining of Ti6Al4V alloy[J]. Journal of Materials Processing Technology, 2008, 196(1-3):79-87. [21] RECH J, ARRAZOLA P J, CLAUDIN C, et al. Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting[J]. CIRP Annals-Manufacturing Technology, 2013, 62(1):79-82. [22] BAI W, SUN R L, ROY A, et al. Improved analytical prediction of chip formation in orthogonal cutting of titanium alloy Ti6Al4V[J]. International Journal of Mechanical Sciences, 2017, 133:357-367. [23] SIMA M, ÖZEL T. Modified material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V[J]. International Journal of Machine Tools and Manufacture, 2010, 50(11):943-960. [24] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[J]. Engineering Fracture Mechanics, 1985, 21(1):31-48. [25] HILLERBORG A, MODÉER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6):773-781. [26] SCHULZ H, ABELE E, SAHM A. Material aspects of chip formation in HSC machining[J]. CIRP Annals-Manufacturing Technology, 2001, 50(1):45-48. [27] MABROUKI T, GIRARDIN F, ASAD M, et al. Numerical and experimental study of dry cutting for an aeronautic aluminium alloy (A2024-T351)[J]. International Journal of Machine Tools and Manufacture, 2008, 48(11):1187-1197. [28] AMBATI R, YUAN H. FEM mesh-dependence in cutting process simulations[J]. The International Journal of Advanced Manufacturing Technology, 2011, 53(1-4):313-323. [29] ZHANG Y C, MABROUKI T, NELIAS D, et al. FE-model for titanium alloy (Ti-6Al-4V) cutting based on the identification of limiting shear stress at tool-chip interface[J]. International Journal of Material Forming, 2011, 4(1):11-23. [30] ZHANG Y C, MABROUKI T, NELIAS D, et al. Chip formation in orthogonal cutting considering interface limiting shear stress and damage evolution based on fracture energy approach[J]. Finite Elements in Analysis and Design, 2011, 47(7):850-863. [31] CHEN G, REN C Z, ZHANG P, et al. Measurement and finite element simulation of micro-cutting temperatures of tool tip and workpiece[J]. International Journal of Machine Tools and Manufacture, 2013, 75:16-26. [32] Titanium Ti-6Al-4V (Grade 5), Annealed[EB/OL].[2018-03-15]. http://matweb.com/search/DataSheet.aspx?MatGUID=a0655d261898456b958e5f825ae8539-0&ckck=1. |