[1] |
王巍, 宝音贺喜格, 姜兴渭, 等. 基于状态观测器的卫星执行机构故障诊断方法研究[J]. 黑龙江自动化技术与应用, 1999(4):9-12. WANG W, BAOYIN H X G, JIANG X W, et al. Fault diagnosis method of actuators in satellite based on state observer[J]. Techniques of Automation and Applications, 1999(4):9-12(in Chinese).
|
[2] |
LI C L, CHEN X Q, JIA Q X, et al. FDD of the attitude control system of satellite with actuator fault and time delay via two-stage Kalman filter[C]//3rd International Conference on Machinery Electronics and Control Engineering, 2014, 441:859-863.
|
[3] |
江文建, 姜斌, 廖鹤, 等. 基于ILLE和SVM的卫星执行机构系统故障检测与定位[J]. 航天控制, 2019(3):4. JIANG W J, JIANG B, LIAO H, et al. Fault detection and location of actuator system in satellite based on ILLE and SVM[J]. Aerospace Control, 2019(3):4(in Chinese).
|
[4] |
胡志坤, 孙岩, 姜斌, 等. 一种基于最优未知输入观测器的故障诊断方法[J]. 自动化学报, 2013, 39(8):1225-1230. HU Z K, SUN Y, JIANG B, et al. An optimal unknown input observer based fault diagnosis method[J]. Acta Automatica Sinica, 2013, 39(8):1225-1230(in Chinese).
|
[5] |
樊雯, 程月华, 姜斌. 基于模糊滑模的卫星姿态控制系统故障诊断[J].东南大学学报(自然科学版), 2010, 40(S1):238-243. FAN W, CHENG Y H, JIANG B. Fault diagnosis in attitude control system of satellite based on fuzzy sliding mode[J]. Journal of Southeast University (Natural Science Edition), 2010, 40(S1):238-243(in Chinese).
|
[6] |
NADERI E, KHORASANI K. A data-driven approach to actuator and sensor fault detection, isolation and estimation in discrete-time linear systems[J]. Automatica, 2017, 85:165-178.
|
[7] |
WANG K, CHEN J, SONG Z. Concurrent fault detection and anomaly location in closed-loop dynamic systems with measured disturbances[J]. IEEE Transactions on Automation Science and Engineering, 2018.
|
[8] |
CHENG Y, JIANG B, LU N, et al. Incremental locally linear embedding-based fault detection for satellite attitude control systems[J]. Journal of the Franklin Institute, 2016, 353(1):17-36.
|
[9] |
李磊, 高永明, 吴止锾, 等. 基于神经网络观测器的卫星姿态控制系统陀螺故障诊断[J]. 计算机测量与控制, 2018, 26(11):7-11. LI L, GAO Y M, WU Z H, et al. Gyroscopic fault diagnosis method for satellite attitude control system based on neural network observer[J]. Computer Measurement & Control, 2018, 26(11):7-11(in Chinese).
|
[10] |
MOUSAVI S, KHORASANI K. Fault detection of reaction wheels in attitude control subsystem of formation flying satellites:A dynamic neural network-based approach[J]. International Journal of Intelligent Unmanned Systems, 2014, 2(1):2-26.
|
[11] |
陈辛, 魏炳翌, 闻新. 基于支持向量机的卫星执行机构故障诊断研究[J]. 中国空间科学技术, 2018, 38(2):47-55. CHEN X, WEI B Y, WEN X. Study of support vector machine based faults diagnosis for satellite's actuators[J]. Chinese Space Science and Technology, 2018, 38(2):47-55(in Chinese).
|
[12] |
JEGADEESHWARAN R, SUGUMARAN V. Fault diagnosis of automobile hydraulic brake system using statistical features and support vector machines[J]. Mechanical Systems and Signal Processing, 2015, 52:436-446.
|
[13] |
CERRADA M, ZURITA G, CABRERA D, et al. Fault diagnosis in spur gears based on genetic algorithm and random forest[J]. Mechanical Systems and Signal Processing, 2016, 70:87-103.
|
[14] |
GRAVES A, MOHAMED A, HINTON G. Speech recognition with deep recurrent neural networks[C]//2013 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway:IEEE Press, 2013:6645-6649.
|
[15] |
ZHOU Z H, FENG J. Deep forest:Towards an alternative to deep neural networks. arXiv 2017[J]. arXiv preprint arXiv:1702.08835.
|
[16] |
陈吕鹏, 殷林飞, 余涛, 等. 基于深度森林算法的电力系统短期负荷预测[J].电力建设,2018, 39(11):42-50. CHEN L P, YIN L F, YU T, et al. Short-term power load forecasting based on deep forest algorithm[J]. Electric Power Construction, 2018, 39(11):42-50(in Chinese).
|
[17] |
HU G, LI H, XIA Y, et al. A deep Boltzmann machine and multi-grained scanning forest ensemble collaborative method and its application to industrial fault diagnosis[J]. Computers in Industry, 2018, 100:287-296.
|
[18] |
沈文博, 孙荣霞, 马少卿, 等. 深度森林与人工神经网络在光伏出力预测的比较[J]. 信息技术与网络安全, 2018,37(4):49-51. SHEN W B, SUN R X, MA S Q, et al. Comparison of deep forest and artificial neural network in prediction of PV output[J]. Information Technology and Network Security, 2018, 37(4):49-51(in Chinese).
|
[19] |
LI M, ZHANG N, PAN B, et al. Hyperspectral image classification based on deep forest and spectral-spatial cooperative feature[C]//International Conference on Image and Graphics. Berlin:Springer, 2017:325-336.
|
[20] |
UTKIN L V, KOVALEV M S, MELDO A A. A deep forest classifier with weights of class probability distribution subsets[J]. Knowledge-Based Systems,2019, 173:15-27.
|
[21] |
康国华, 杨炳辉, 刘瑶, 等. 基于微小卫星编队的聚光操控技术[J]. 航天控制, 2018, 36(2):42-47. KANG G H, YANG B H, LIU Y, et al. The technology of light control based on small satellite formation[J]. Aerospace Control, 2018, 36(2):42-47(in Chinese).
|