航空学报 > 2020, Vol. 41 Issue (S1): 723790-723790   doi: 10.7527/S1000-6893.2019.23790

基于神经网络补偿的室内无人机组合导航系统

关翔中1, 蔡晨晓2, 翟文华1, 王磊1, 邵鹏1   

  1. 1. 上海机电工程研究所, 上海 201109;
    2. 南京理工大学 自动化学院, 南京 210094
  • 收稿日期:2019-11-15 修回日期:2019-11-28 出版日期:2020-06-30 发布日期:2020-01-10
  • 通讯作者: 关翔中 E-mail:18362961073@163.com

Indoor integrated navigation system for unmanned aerial vehicles based on neural network predictive compensation

GUAN Xiangzhong1, CAI Chenxiao2, ZHAI Wenhua1, WANG Lei1, SHAO Peng1   

  1. 1. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China;
    2. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
  • Received:2019-11-15 Revised:2019-11-28 Online:2020-06-30 Published:2020-01-10

摘要: 针对无人飞行器在环境特征突变情况下数据融合的可靠性大幅下降问题,提出了神经网络预测补偿的组合导航算法。首先利用扩展卡尔曼滤波和粒子滤波对激光、光流等传感器得到的数据进行融合,然后采用径向基函数(RBF)神经网络对粒子滤波前后的误差进行预测。当激光数据可靠时,RBF神经网络进行训练学习模式,当激光数据中断或者不可靠时,利用训练后的模型对系统进行误差补偿。利用无人飞行器在室内环境下进行定点和轨迹实验,结果表明补偿后的位置导航信息能够明显降低激光数据不可靠时带来的定位误差。

关键词: 组合导航系统, RBF神经网络, 扩展卡尔曼滤波, 粒子滤波, 预测补偿

Abstract: Aiming at the problem that the reliability of data fusion will be drastically reduced when the environmental characteristics of the unmanned aerial vehicle are mutated, this paper proposes an algorithm to address the problem based on the prediction and compensation of neural network. First, the extended Kalman filter and particle filter are used for data fusion of laser and optical flow sensor, and then the Radial Basis Function (RBF) neural network is used to estimate the error before and after applying the particle filter. When the laser data is reliable, the RBF neural network enters the learning mode. When the laser data are interrupted or unreliable, the system is compensated by using the trained model. The results of the hover and trajectory experiments of unmanned aerial vehicles in the indoor environment show that when the laser data are unreliable, the compensated position for navigating is still reliable.

Key words: combined navigation system, RBF neural network, extended Kalman filter, particle filter, predictive compensation

中图分类号: